
° q

NASA Contractor Report 177557

Id x-/__---

Army-NASA Aircrew/Aircraft Integration
Program (A31) Software Detailed Design
Document: Phase I!1

Carolyn Banda
Alex Chiu

Gretchen Helms

TehMing Hsieh
Andrew Lui

Jerry Murray
Renuka Shankar

(NASA-CR-177557) ARMY-NASA AI_C_W/AI_CRAFT

INTFGRATION PRQGRAM (ASI) SOFTWARE DETAILEO

DESIGN DOCUMENT v PHASE 3 (Sterlin_ Federal

Systems) 303 p CSCL OSH

N_I-1971_

UncIJs

0001645

CONTRACT NAS2-11555
June 1990

National Aeronautics and
Space Administration

NASA Contractor Report 177557

Army-NASA Aircrew/Aircraft Integration
Program (A31) Software Detailed Design
Document: Phase I!1

Carolyn Banda
Alex Chiu

Gretchen Helms

TehMing Hsieh
Andrew Lui

Jerry Murray
Renuka Shankar

Sterling Federal Systems, Inc.
Palo Alto, California

Prepared for
Ames Research Center
CONTRACT NAS2-11555
June 1990

National Aeronautics and

Space Administration

Ames Research Center
Moffett Field, California 94035-1000

Table of Contents

1. INTRODUCTION .. 1
1.1 Identification ... 1
1.2 Scope ... 1
1.3 Purpose .. 1

2. RELATED DOCUMENTS ... 2
2.1 Applicable Documents ... 2
2.2 Information Documents. .. 2

3. REQUIREMENTS & DESIGN APPROACH ... 2
3.1 Requirements and Rationale. .. 3

3.1.1 Integrated Modelling Environment .. 3
3.1.2 Analysis and Decision Aiding .. 4
3.1.3 Visualization and User Interfaces .. 5
3.1.4 Incremental Development ... 6

3.2 Hardware Environment .. 7

3.2.1 Symbolics Lisp Machines ... 8
3.2.2 Silicon Graphics Computers. ... 8
3.2.3 Other Processors. ... 10

3.2.4 Networking Hardware ... 10
3.2.5 Peripherals .. 10

3.3 Software Environment. ... 10

3.3.1 Rapid Prototyping ... 10
3.3.2 Object-Oriented Programming .. 10
3.3.3 Source Code Control ... 10

4. PHASE III DETAILED DESIGN ... I2
4.1 Introduction .. 12

4.1.1 Symbolic Modelling CSCI .. ! 2
4.1.2 Graphic Views CSCI ... 13
4.1.3 Cockpit Design Editor (CDE) CSCI ... 13
4.1.4 Anthropometric Model or JACK CSCI .. 13
4.1.5 Aerodynamics & Guidance Model (AGM) CSCI 14
4.1.6 Communications CSCI .. 14

4.1.7 Training Assessment CSCI ... 14
4.1.8 Scheduler ... 14

4.2 Demonstration Scenario .. 15

4.3 Programmatic Information ... :............................ 16
4.3.1 Risks .. 16
4.3.2 Summary of Results .. 16

4.3 Limitations ... 17
4.4 Future Directions ... 18

5. HISTORICAL INFORMATION ... 19
5.1 Phase I Development. ... 19

5.1.1 Requirements and Design Approach .. 19
5.1.1.1 Summary Level .. 19
5.1.1.2 Mission Modelling ... 19
5.1.1.3 Graphics ... 19
5.1.1.4 Human Performance Modelling :. 20
5.1.1.5 Demonstration Scenario .. 20

5.1.2 Hardware Environment ... 20

5.1.2.1 Symbolics Lisp Machines .. 21
5.1.1.2 Silicon Graphics Computer_ .. 21
5.1.2.3 Other Processors ... 22
5.1.2.4 Networking Hardware .. 22
5.1.2.5 Peripherals .. 22

5.1.3 Software Environment .. 22

5.1.4 Programmatic Information ... 22

iii

PRECEDING PAGE BLANK Nui riLh/iED
J

Table of Contents

.

6.

5.1.4.1 Risks ... 22

5.1.4.2 Summary of Results ... 23
5.2 Phase II Development...,, .. 23

5.2.1 Requirements and Design Approach .. 23
5.2.1.1 Summary Level .. 23
5.2.1.2 Modelling Environment ... 24

5.2.1.2.1 Mission Editor ... 24
5.2.1.2.2 Modeller .. 24
5.2.1.2.3 Visual Modeller .. 25
5.2.1.2.4 State Display Editor ... 25

5.2.1.3 Pilot Models ... 25

5.2.1.3.1 Anthropometric Model 25
5.2.1.3.2 Loading Model .. 25

5.2.1.4 Vehicle/Systems Models .. 26
5.2.1.4.1 Dynamics and Guidance Models, 26
5.2.1.4.2 Cockpit Display Editor 26

5.2.1.5 World Models. .. 26
5.2.1.5.1 World Models .. 27
5.2.1.5.2 Views ... 27

5.2.1.6 Analysis and Decision Aiding ... 27
5.2.1.6.1 Training Requirements Prediction 27

5.2.1.7 Demonstration Scenario .. 27
5.2.2 Hardware Environment ... 27

5.2.2.1 Symbolics Lisp Machines .. 28
5.2.2.2 Silicon Graphics Computers, .. 29
5.2.2.3 Other Processors ... 29
5.2.2.4 Networking Hardware .. 29
5.2.2.5 Peripherals ... 29

5.2.3 Software Environment. .. 29
5.2.4 Programmatic Information ... 30

5.2.4.i Risks ... 30
5.2.4.2 Summary of Results ... 31

APPENDICES ... 31

6.1 Glossary, Definitions, Abbreviations ... 31
ANNEXES .. 33

Annex A m Symbolic Modelling CSCI .. 33
Annex B -- Views CSCI.., 33
Annex C -- Cockpit Design Editor CSCI ... 33
Annex D -- Anthropometri c Model "JACK" CSCI .. 33
Annex E -- Aerodynamics/Guidance CSCI .. 33
Annex F -- Communications CSCI ... 33
Annex G -- Training Assessment CSCI .. 33

iv

A3I Phase llI Software Detailed Design Document Page 1

1. INTRODUCTION

1.1 Identification

This document establishes the requirements and detailed design of the Army-NASA
Aircrew/Aircraft Integration (A3I) Computer Program System (CPS) and subordinate
Computer Software Configuration Items (CSCI). Introductory descriptions of the
processing requirements, hardware/software environment, structure, I/O, and control are
described for the overall CPS, with detailed discussion of the individual CSCIs included in

Annexes A-F. Development history and rationale for the A3I CPS is also provided,
although the emphasis is on describing its functionality at the end of Phase HI.

1.2 Scope

This document is intended for the use of programmers and other technical specialists
working on the development of the prototype A3I computer-aided engineering workstation.
Sufficient high level information is provided to allow any reader to become familiar with
the objectives of the A3I Program, the current (as well as previous) overall architecture and
development philosophies, while at the same time containing implementation detail useful
to programmers involved with specific application software modules.

This document is revised during each phase of development, tracking the history of
changes to the configuration, and more important!y, the motive for such changes.
Familiarity with previous phases of development is assumed. For historical information
regarding Phases I and II, the reader is urged to consult Section 5, Historical Information
or the reference documents from previous phases.

1.3 Purpose

The purpose of the A3I CPS is to serve as the integration and demonstration framework in
which the applied research products of the Pro.gram are instantiated. This framework is a
prototype computer-aided engineering workstaaon suite termed MIDAS--for Man-machine
Integration Design and Analysis System--that integrates human factors engineering with
other vehicle/system design disciplines at an early stage in the development process of
manned vehicles.

MIDAS is intended to be a human factors engineering tool which assists design engineers
in the conceptual phase of rotorcraft crewstation development and helps anticipate crew
training requirements. The system provides designers with interactive, analytic, and
graphical tools which permit early integration and visualization of human engineering
principles.

70 to 80 percent of the life-cycle cost of an aircraft is determined in the conceptual design
phase. After hardware is built, mistakes are hard to correct and concepts are difficult to
modify. Engineers responsible for developing crew training simulators and instructional
systems currently begin work after the cockpit is built and too late to impact its design.
When complete, MIDAS will give designers an opportunity to "see it before they build it,"
to ask "what if" questions about all aspects of crew performance, including training, and to
correct problems early. The system is focused on helicopters, but is generic and permits
generalization to other vehicles.

A3I Phase Ill Software Detailed Design Document Page 2

MIDAS is similar in concept to computational tools such as finite element stress analysis and
computational fluid dynamics which are used to improve designs and reduce costs. The
results of the computational analysis are presented vi_j.Lq.0_. The workstation uses models
of human performance and a computational simulation of "manned flight" to evaluate the
cockpit design. The results are presented graphically and visually to the design engineers,
often as a computer animation of manned flight.

The components of MIDAS at the end of Phase III include:

1) The Symbolic Modelling CSCI, containing methods to represent and decompose
the design of a crew station, the required mission, the environment, human performance
models of the crew, and the causal relations existing between these elements for analysis.
A tick-based simulation is "driven" by the interactions of these models/activities.

2) The Views CSCI which is used to create and observe, from several
perspectives, the 3-D graphic environment of the mission simulation.

3) The Cockpit Design Editor or CDE CSCI which contains 3-D CAD utilities for
designing the cockpit geometry, instruments, controls, and displays.

4) A 3-D, interactive, anthropometric pilot model or graphic mannequin called the
JACK CSCI.

5) The helicopter Aerodynamics and Guidance CSCI.

6) The Data Communications CSCI, facilitating the intermachine communications
and dynamic message sharing between the above components.

7) The Training Assessment CSCI, providing means to estimate the training media,
instructional techniques, and time necessary to qualify in the cockpit under development.

The A3I program began in fall 1984 and has completed three major phases of development
toward a 1994 target date for a full prototype system. Phase HI was focused on the
expansion of several of the aforementioned components, particularly with an emphasis to
make explicit their sensitivity to changes in cockpit design.

2. RELATED DOCUMENTS

2.1 Applicable Documents

A31 Executive Summary, 15 April 1986

2.2 Information Documents

A_I Phase II Human Factors�Computer-Aided Engineering Workstation Suite Architecture
Description Document, Revision 1, 30 Nov 87

Human Performance Models for Computer-Aided Engineering, National Research Council
Committee on Human Factors, National Academy Press, 1989

3. REQUIREMENTS & DESIGN APPROACH

A3I PhaseIII SoftwareDetailedDesignDocument Page3

3.1 Requirementsand Rationale

Because they are central requirements for the overall A3I Program, a number of key
developmental aspects must be mentioned prior to describing the MIDAS computational
environment or Phase HI specifics in paragraphs 3.2, 3.3, and 4, respectively.

First, the tools and models of MIDAS are intended to support three major phases of the
design process. These include specification, static analysis, and dynamic analysis. Tools
such as the Cockpit Design Editor and portions of the Symbolic Modeling CSCI exist to
allow the user to input or "specify" the elements of the mission, crew, cockpit, and
environment that are given or known. Secondly, a number of the tools and models, such
as the anthropometric model or Jack CSCI, can be used for static analysis. Here, the intent
is to support analyses such as reach or visibility which can be answered for static or fixed
conditions and do not require complex interactions that can only be discovered through a
dynamic scenario. Finally, components such as the Aerodynamics & Guidance Model, the
Communications CSCI, and portions of the Symbolic Modeling CSCI exist to aid in
dynamic analysis through a model-based simulation of the operator, equipment, and
environment interactions. This simulation uses a discrete time or tick-based approach to
explore the changing world, operator, and equipment states and propogate their effects over
time. Since computational models and principles of human performance replace the
operator found in typical man-in-the-loop simulations, MIDAS contains no requirement for
real-time human interaction---a feature which would be unnecessarily restrictive for our
objectives.

As an important final note, the A3I Program attempts to achieve these design support goals
by using extant software and systems to the greatest extent possible. A considerable
amount of research effort, money, and time has been expended nationally to produce
analytic methods, models and structures representing the behavior and functions of human
operators, avionics systems, and missions, with varying degrees of success. Where
possible, the staff will selectively employ those models/tools which have already been
developed, engaging in research and development for such components only when a
critical void is encountered. The advice of the National Research Council's Committee on

Human Factors (study group on Human Performance Models and their reference report)
has been solicited on this matter, resulting in our adoption of the following guidelines.

3.1.1 Integrated Modelling Environment

An enormous amount of modelling is anticipated throughout the life of the Prograna, with
the operator, helicopter, and world as the major categories of models. Since the effort
envisioned is primarily one of integrating the many and diverse software modules within a
cohesive, inspectable workstation suite, several methodologj'es have been used to enhance
this process. The A3I Program has elected a simulation-based approach to system design
and evaluation that attempts to make extensive use of graphic and iconic representations of
the underlying model structures. Models are generally prescriptive, providing results
relevant to mission success in terms of such parameters as performance, errors, duration,
and rates. Although the use of extant, validated models is preferred, it will often be the
case, (particularly in the domain of human modelling) that relatively unproven, recently
developed research results may be incorporated in the workstation for evaluation. It is
intended that the MIDAS workstation will serve a dual purpose in this role by providing an
integrated environment for model inspection and testing. Figure 1 provides a notional view
of the range and types of model interaction anticipated within the MIDAS environment.

A3I Phase llI Software Detailed Design Document Page 4

ENVIRONIVlENTAL]
STATE I

VARIABLES I

1
AUTOMATED

MISSION/TASK
ANALYSIS

__[PRESCRIBED _SCENARIO

-I M'SS°NI1OYNAM'CI!APPL'EOIO,SP YP,LoT'N'K'N EL sV'S'ON

I FLIGHT PATH [MANAGEMENT l SUPPORT 1TASKS

I I
_[PILOT BEHAVIOR/

P_E
MODELS

i

MISSION
MANAGEMENT

TASKS

t _-I SYSTEM FUNCTION
i MODELS AND

iCONTROLS/DISPLAYS

DISPLAY
ELEMENTS

STATE
VARIABLES

1 r

STATE
VARIABLES

Figure 1. Notional MIDAS Workstation Models & Integration

The pilot is the critical link in the system being represented and the specifics of performance
must ultimately determine overall behavior of the system being designed. At each step in
the selected scenaxio, and for the specific control/display design being investigated, the
pilot performance and behavioral models provide appropriate input to the aircraft dynamics
models, equipment models and environment to generate the next event-step in the scenario

as it unfolds. Thus if mission demands, display interpretation requirements, information
handling demands, or multiple tasking, etc. exceed reasonable pilot capabilities, the
operator performance and behavior models should ideally supply the kind of reduced-
performance response which should be expected.

The use of abstraction is also strongly encouraged as part of this integrated environment.
The goal is to be able to simplify each model from precise computational representations to
approximate, qualitative models, as determined by the interactions under study and the
answers desired. As the workstation architecture evolves, it is expected that both
deterministic and stochastic constructs will be required within the same simulation
environment to make use of the widest possible range of extant models.

3.1.2 Analysis and Decision Aiding

Analytical capabilites contained within MIDAS are intended to emphasize three aspects of
the simulated operator's behavior--timeliness, accuracy, and loading--along with their
contributions to and results from man/machine system performance, equipment design, and

A3I Phase III Software Detailed Design Document Page 5

training. Because the workstation focus to date has been on model development and
integration, the majority of the analysis tools envisioned are still undeveloped. Currently,
task/loading timelines are the primary means of analysis. This core capability is augmented
with prototype examples of how human engineering data compendiums and training
analysis tools can also aid in the design process.

As previously mentioned, both static and dynamic analysis procedures are required within
MIDAS. For example, reach and fit analyses for cockpit controls can be performed on
geometric representations of the cockpit without the need for elaborate vehicle
dynamics/systems or human performance simulation models. On the other hand,
modelling the complex interactions of competing tasks during the performance of some
mission requires considerable dynamic modelling of both human behavior/performance and
vehicle systems to capture the context-sensitive, time-varying nature of task sequencing and
resultant loads. The key is to recognize that within the workstation no single figure of
merit or analysis tool will provide all of the answers required in man-machine analysis.

Consequently, as dictated by the capabilities of the underlying models, analysis capabilities
will be continuously added and refined. MIDAS capabilities are not intended to obviate the
designer's job or stiffle creativity. Interpreting "grey" or subjective results, as well as the
aggregation of many different findings into a summary figure, are tasks which are best left
to human designer/analyst judgement. Instead, MIDAS is concentrated on providing
analysis within a decision aiding context by helping designers determine the appropriate
remedial action in the event of failure to perform a mission, excessive error rates, overloads
or exceeding other parameters deemed significant by the user. When black-and-white
answers can be determined (such as whether an instrument can be seen or reached) a black-
and-white result will be given. However, most of MIDAS's use will come from iterative
processes where the designer can vary conditions and model parameters until they feel
adequate data is available. Many times, this information will be qualitative in nature,
leading not to specific conclusions, but descriptive enough that when combined with
human expertise, the appropriate evaluations can be made.

The substantial body of data and information generated during the simulation must be
interpreted in a manner that is meaningful and relevent to various specialists evaluating a
candidate cockpit design. To achieve such goals, graphic and analog displays of chosen
parameters of interest is encouraged. This topic is further described below.

3.1.3 Visualization and User Interfaces

The Program's emphasis on visualizing the results of complex interactions is intended to
facilitate the use of MIDAS in a design/analysis session without requiring an undue amount
of knowledge about the underlying implementation.

Data and information selected as interesting is required to be presented in a form the
designer/user finds easy to interpret. Alphanumeric tabular forms, though easiest to
generate, are often ill-suited to designer/user needs, hence alternate forms are required to
facilitate the designer/user's easy insight into the overall progress of the simulation and a
global understanding of complex and interrelated man-machine factors. The use of graphic
and iconic representations also facilitates communication between designers from different
technical disciplines by substituting commonly-understood pictures for words which may
have different meanings to each. The result is adepiction of the impact of design decisions
in a form which is meaningful to a wider range of potential users.

The user's interface to the computational tools and models of MIDAS is extremely
important. However, since the Program's charter is to develop prototype facilities on an
architecture that is continually evolving and may or not be common to prospective delivery

A3I Phase IIl Software Detailed Design Document Page 6

platforms, a polished, consistent interface across all of the applications has not been a
priority. Furthermore, the reliance on outside universities and research organizations for
various fundamental workstation components makes a unified interface concept difficult.
As a general requirement however, each application developer is encouraged to use
cognitive or computer science research findings in human-machine interactions when
available. Pop-up windows, pull-down menus, and the manipulation of graphic or iconic

representations, similar to those made popular in the Apple Macintosh ® desktop, have
migrated into the majority of the CSCIs. The sophistication of the individual interfaces is
generally a function of the maturity of the underlying tool/model, with roughly 15-20% of
the development effort committed to the user interaction.

In future phases, greater emphasis will be placed on the user interface area. Since cognitive
or computer science research findings have typically not kept pace with emerging hardware
technologies (voice I/O, touch panel overlays, 6 DOF mice, eye trackers, stereoscopic
displays, etc.), the Program will initiate an effort to develop a unified, principle-based
approach to user interfaces that is based on human-computer interactions (I-ICI) research at
various universities and industry centers.

3.1.4 Incremental Development

The A3I Program's prototype MIDAS workstation is developed in phases, each adding
another increment of functionality to the existing configuration. Integration of software
configuration items is performed at NASA/Ames Research Center by in-house staff in
cooperation with outside support as required. Upon the completion of each 8-14 month
phase, demonstrations are held, feedback solicited, compiled and assimilated, and planning
meetings conducted to propose appropriate work for the following phase of development.
Work breakdown structures and schedules are developed to track phased development in
each major work area. Documentation, primarily this Software Detailed Design Document,
is developed and updated coincident with new/modified software.

Figure 2 below depicts major phase milestones since the Program's inception.

85 86 87 8 8 89 90 91 92 93

I I I I I I I ! I

PHASE 0

PHASE I [[Proofof

Review' Planning' D°c I IIPHASE II

Review, Planning, Documentation

PHASE III

Review, Planning, Documentation, Tech Xfer

PHASE IV

Application Review, Planning, Documentation

-'_ Planning;AcquireEquipment& Staff

Conceptw/Prototype Mission

I ools andArchitecture

evelopment

I I WorkstationArchitectureI & ModelingExpansion

I[I Tool& Model Refinement,

ply to NewCockpit Dev.

Figure 2. A3I Program Timeline

A3I Phase llI Software Detailed Design Document Page 7

3.2 Hardware Environment

The specific computational hardware environment for each CSCI is described in detail
within Annexes A-F. The progression of such hardware throughout the development
phases is also described in Section 6 Historical Information. In general, the program has
adopted the requirement to use existing and proven hardware--namely networked Silicon
Graphics Workstations and Syrnbolics Lisp Computers. Beta architectures and the
development of unique hardware in cases where workable, off-the-shelf solutions exist are
not permitted. Exceptions to this standard in the later stages of workstation development
may be investigated when performance is being optimized and potential delivery platforms
explored.

The hardware architecture in place at the end of Phase HI is depicted in Figure 3 below.
These components, together with their resident software and peripherals are described in
further detail in the subsections which follow.

45MB 1/4"
TAPE

32 BIT

COLOR

DOUBLE
B_ 45MB 1/4"

TAPE

3675

CABINET

1/4"

TAPE.

Figure 3. Phase HI Hardware Configuration

Two of the Symbolics and two of the Silicon Graphics computers listed above are
essentially development assets and are not required for demonstration or actual use.

A3I Phase Ill Software Detailed Design Document Page 8

3.2.1

Model

Symbolics Lisp Machines

3675 Color Workstation (Barracuda) consisting of:

Monochrome Console with OCLI filter

Keyboard & Mouse

45 MB 1/4" Cartridge Tape Drive
Ethernet Controller and Transceiver
22.5 MB RAM

Enhanced Performance Option
338 MB Fujitsu Eagle Disk
550 MB CDC Disk

Model CG70-FB02 High Resolution, 24-bits/Pixel Color Frame Buffer
Tektronix 19" Color RGB Monitor

Model OP36-FPA1 Floating Point Accelerator

Symbolics # SLAN-FORT Fortran 77 Compiler
Symbolics # STCP-1 TCP/IP Software
S-Group (S-Paint, S-Geometry, S-Render. S-Dynamics, and color 6.0 V405.13)
Genera 7.2

Model

Model

Model

3640 Color Workstation (Puffer) consisting of:

Monochrome Console with OCLI Filter
Keyboard & Mouse

45 MB 1/4" Cartridge Tape Drive
Ethernet Controller and Transceiver
11.25 MB RAM
2-140 MB Disks
CAD Buffer
Tektronix 19" Color RGB Monitor

Symbolics # SLAN-FORT Fortran 77 Compiler
Symbolics # STCP-1 TCP/IP Software

S-Group (S-Paint, S-Geometry, S-Render, S-Dynamics, and color 6.0 V405.13)
Genera 7.2

3640 Monochrome Workstation (Squid) consisting of:

Monochrome Console with OCLI Filter
Keyboard & Mouse
Ethernet Controller and Transceiver
13.5 MB RAM
2-140 MB Disks

Symbolics # SLAN-FORT Fortran 77 Compiler
Symbolics # STCP-I TCP/IP Software
Genera 7.2

Automated Reasoning Tool (ART) Version 3.2

3620 Monochrome Workstation (Sea Slug) consisting of:

Monochrome Console with OCLI Filter

Keyboard & Mouse
Ethernet Controller and Transceiver
18 MB RAM
190 MB ST506 Disk

Symbolics # SLAN-FORT Fortran 77 Compiler
Symbolics # STCP-I TCP/IP Software
Genera 7.2

3.2.2 Silicon Graphics Computers

W-2500A Workstation (Orca) consisting of:

19" High Resolution Monitor
Keyboard & Mouse

A3I Phase IlI Software Detailed Design Document Page 9

45 MB 1/4" Cartridge Tape Drive
Ethernet Controller and Transceiver
12 MB RAM
2 474 MB Fujitsu 10.5" Disk Drives

HU-T04 Turbo Option W/4MB RAM
H3-FPA Floating Point Accelerator
H-DM4A 1024x1024x4 Display Memory
H-ZC2 Z Clipping Assy
C-WTCP IP/TCP Software
P-DBX Dial/Button Box
Unix System V with BSD 4.2
NFS

C Compiler

IRIS Graphics Library II and Window Manager

W-3120 Workstation (Manta) consisting of:

19" High Resolution Monitor
Keyboard & Mouse
Ethernet Cona'oller and Transceiver
8MB RAM
72 biB Winchester Disk Drive

H3-FPA Floating Point Accelerator

H-DM4A 1024x1024x4 Display Memory
H-ZC2 Z Clipping Assy
C-WTCP IP/TCP Software
P-DBX Dial/Button Box
Unix System V with BSD 4.2
NFS

C Compiler

IRIS Graphics Library II and Window Manager

W-4D 120GTX PowerSeries Workstation (Coral) consisting of:

19" High Resolution Monitor
Keyboard & Mouse
Ethernet Contzoller and Transceiver
16 MB RAM
380 biB ESDI Winchester Disk Drive

Double Buffered 1280x1024x4 Display Memory
Double Buffered Alpha
24 bit Z buffer

C-WTCP IP/TCP Software
P-DBX Dial/Button Box

IRIX System V release 4D1-3.1D
NFS

C Compiler
C++ Translator

Fortran 77 Compiler

IRIS Graphics Library II and 4Sight Windowing System

W-4D20G Personal IRIS Workstation (Urchin) consisting of:

19" High Resolution Monitor
Keyboard & Mouse
Ethernet Controller and Transceiver
8 MB RAM
170 MB SCSI Winchester Disk Drive

1280x1024x4 Display Memory
Double Buffered Alpha
C-WTCP IPfI'CP Software

IRIX System V release 4D1-3.1D
NFS

C Compiler

IRIS Graphics Library II, 4Sight Windowing System, and Environment Manager

A3I Phase HI Software Detailed Design Document Page 10

3.2.3 Other Processors

An unused DEC MicroVax H is on loan to a neighboring branch.

3.2.4 Networking Hardware

CableTron MT-800 Ethemet/IEEE 802.3 Transceiver

3.2.5 Peripherals

Okidata Model 2410 Dot Matrix Printer
Apple LaserWriter Plus Laser Printer
Seiko Instruments D-Scan CH5312 Color Printer & Multiplexor
GraphOn GQ-250 ASCII Terminal & Keyboard (2)
Hewlett-Packard HP 700122 ASCII Terminal & Keyboard (3)

3.3 Software Environment

A powerful software development and integration environment is obviously essential to
A3rs progress with human engineering tools and models. However, as stated previously,
it is not the charter of the A3I Program to develop new models. Rather, the Program will
produce a prototype framework for the integration and evaluation of those that already
exist, developing new models only when necessary. These models exist in various
languages (Fortran, C, Pascal, Lisp, Prolog, etc.), simulation views (continuous, discrete,
network, combined) and paradigms (dataflow, functional, procedural, descriptive).
Consequently, one of the Program's central challenges is to design and implement a general
environment that can accomodate these variations easily and quickly while maintaining
inspectability and modularity at various levels of modelling abstraction. Three key
development philosophies support these goals:

3.3.1 Rapid Prototyping

Since its inception, the A3I Program has emphasized the evaluation of architectural issues
and model requirements through rapid prototyping. Much of what is being attempted by the
software development staff is radically new with no known, proven methods. Rapid
prototyping as a means to develop the various tools and models has both guided and
facilitated subsequent effort, providing the opportunity for scientific scrutiny and using-
community feedback before an overwhelming development effort is expended.

3.3.2 Object-Oriented Programming

The A3I Program has adopted the use of object-oriented programming methods, where
practical, in an effort to manage the complexity of the simulation software through
modularity, abstraction, as well as promote graceful incremental software development.
While not universally applied to every CSCI, the object-oriented paradigm is a natural
match to the structure of the man-machine integration problems investigated by A3I
(helicopter, operator, and world), supports extensive reuse of software structures, and
appears to be an evolving standard of the software development community.

3.3.3 Source Code Control

Software for which the Program does not have access to source code (with modification
rights) is generally not permitted in the configuration. Encumbrances to releasing internally

A3I Phase HI Software Detailed Design Document Page 11

developed software to other organizations will cripple the Program's success since
technology transfer is a primary concern. However, exceptions have been allowed for
packages with clearly defined and easily accessable software interfaces that would be
inappropriate for the Program to develop, or software development utilities (shells,
debuggers, process performance metering, function libraries, etc) that offer superior
performance which other organizations have ready access to.

Generally, the graphic design and analysis tools were built using C, Unix BSD 4.3, and
the IRIS Window Manager/Graphics Library II. The Multigen modelling package was
used as the underpinnings for the CDE and Views components, as well as a visualization
medium for the Aerodynamics and Guidance CSCI. Most Lisp tools and models were built
using Symbolics Common Lisp, with the Flavors extension, under Genera 7.2. The
Training Analysis CSCI uses the Automated Reasoning Tool (ART) as a shell for its
inference requirements. The S-Packages were available for use in displays, although not
heavily relied upon during this phase. Communication software uses a local Ethernet to
enable inter-machine message passing and simulation synchronization. The distribution of
the Phase III models, tools, and displays is shown in Figure 4 below.

_ !i _-._e.._, I I e._i, oWt.yI

i it-

- | Minion Build ,'_nthropometn/Analysis Cockpit Build

Task Decomposition Inspection Human Fac_om Data Base
Pilot Models

Simulation Monitoring
Task Analysis & Stale Dispiay

Engineering Data Search RJR_:

World View
Pilot View

Plan View

Fly-thru

FUNCTIOt_S: FUNCTIONS:

Training Volume Field of
Requtrerftents View Projection

Predictions

Development

[]]B

Figure 4. Distribution of Phase III Software Components
and Displays within the A3I Lab

Absent from the figure above is the Communications CSCI. This component is actually
distributed among all of the various Symbolics and Silicon Graphics machines as dictated
by the integration requirements. Currently, the capability exists to share the following
variables among the graphic and symbolic computers during a simulation.

A3I Phase lIl Software Detailed Design Document Page 12

For each Helicopter (Ownship and Wing): *Ownship only

Helicopter position (x, y, z)
Helicopter orientation (yaw, pitch, roll)
Altitude (AGL), Airspeed, Groundspeed
Velocity in each axis
Engine torque
*Cyclic position, pedal position, collective position

For each Truck or Ground Vehicle (up to 6):

Truck position (x,y,z)
Truck orientation (yaw)

For each Missile on board a Helicopter or Ground Vehicle (up to 9):

Missile position (x, y, z)
Missile orientation (yaw & pitch)

Additionally, each object above has several "flags" which can bet set to communicate when
an event such as a "hit" or an "explosion" occurs.

4. PHASE III DETAILED DESIGN

4.1 Introduction

Responses to the Phase II demonstrations, as well as discussion at the Phase III off-site

reinforced the need to continue the development of the core set of A3I models and tools.
However, emphasis needed to be placed on explicitly addressing how such models and tools
would be sensitive to cockpit design change. Furthermore, the enhancement of the present
applications and the start of new components must be anchored to a "real world" application for
effective demonstration positions. The Program office decided to use a detailed, "vertical slice"
of the conceptual development process as a method to illustrate the intended use of the
workstation. The AH-64A mission and cockpit was the focus of the phase, with empiracal
flight test results from an AH-1 Cobra Communication Study as a source of specific task data.
These objectives required a degree of integration and detail previously impossible, and drove a
number of development requirements for the individual MIDAS components. These
requirements and the resulting design approach are briefly desribed below with a majority of the
details provided in Annexes A-F.

4.1.1 Symbolic Modelling CSCI

Consisting of a mission editor, task decomposition aids, simulation constructs and executive, as
well as state displays for task analysis, the focus for the Symbolic Modelling CSCI during this
phase was on the design and coding of a generalizable framework for symbolically representing
the functions of cockpit equipment used to accomplish mission tasks. This framework allows
various cockpit alternatives to be evaluated without completely re-editing the mission
decomposition, since the design maintains a distinction between the physical structure (or state
operators) of the equipment, and the functional requirements (or inferred goals) required by the
task. Previous A3I symbolic models of the mission and pilot tasks failed to explicitly depict the
relationship of the equipment design and the primitive task actions, loading values, or timelines.
Results of the "vertical slice" example (report phase line) were used to demonstrate this process
and successfully compared to actual data from a similar AH-1 flight test conducted by the
Aeroflightdynamics Directorate. Task timeline, resource use, and loading displays were similar
in concept to those used during previous phases.

A31 Phase IlI Software Detailed Design Document Page 13

The mission editor and equipment representation portions of this CSCI are valuable in them
selves since they allow a user to rapidly explore the detailed task ramifications of various cockpit
designs. However, their real strength comes when used as part of the simulation. Using an
hierarchical decomposition, mission, task, environment, or operator objects are instantiated when
their conditions are met, executing their assigned procedures and spawning new activities.
Contained within the various task objects is information on temporal relationships,
preconditions, logical contraints, loading, and any subtasks. In this manner, the decomposed
mission serves as a forcing function for the various models/tools used during a simulation.

4.1.2 Graphic Views CSCI

Phase III development requirements for the Views CSCI are best described as enhancements to
the well-received capabilities existing in Phase II. The internal resolution of the geometric
modelling package was reduced from 3/8 inch to 1/256 inch, permitting sharper and more
detailed rendering of the DMA terrain and moving models. Also added was the capability for the
user to select by mouse a viewing position from anywhere within the mission garmng area.
Existing low-detail helicopter models were also replaced by the fully populated AH-64A model
developed using the CDE. Finally, the Views CSCI was ported to the new IRIS 4D and
modified as dictated by a new version of the underlying MultiGen software.

4.1.3 Cockpit Design Editor (CDE) CSCI

Existing CDE software was ported to the IRIS 4D and improved with the addition of pop-up user
windows, an hierarchical data base of instrument information and characteristics for human
factors analysis, and improved mouse operations. The CDE was successfully used to build a
detailed 3-D model of the complete AH-64A pilot cockpit and instrumentation, providing both a
feasible application of its capabilities, as well as cockpit/craft models for the remaining
workstation elements. An F-16 cockpit was also created for potential use within the fixed-wing
community. A fair amount of debugging of the initial CDE code took place with these full-scale
CAD attempts, along with code changes brought about by a new version of the underlying
MultiGen software.

4.1.4 Anthropometric Model or JACK CSCI

Under our grant to Dr Norm Badler and the University of Pennsylvania, the 3-D dynamic
anthropometric model was also ported to the IRIS 4-D and now includes fully defined body
parts, limb joint constraint settings, adjustable eye viewpoints, as well as improved animation
capabilities. This model was placed inside the AH-64A cockpit designed with the CDE and
saved in a Psurf format, and "instructed" to perform elementary psychomotor operations through
mouse operations. An somewhat unrealized goal for this phase involved "driving" Jack through
the task decomposition commands on the Symbolics. Although demonstrated in a small scale,
this level of integration during a simulation was not pursued due to the lack of a synchronizing
"time concept" within Jack. A number of miscellaneous improvements were also added by the
developer including a spread-sheet style anthropometric database with editing options, increased
functionality in shaded (rather than wire-frame mode), and a new sliding window user interface.
Jack was used during the phase to perform reach analyses and a simplified visual occlusion test
using 5th and 95th percentile males/females in the Apache Cockpit.

Far more rigorous vision models were kicked-off this phase with a grant to the New York
Association for the Blind, and a contract with the David Sarnoff Research Center. These models
of volume field of view and legibility, respectively, will be integrated within the Jack
environment but are not detailed within this document since preliminary versions are not expected
until Phase IV.

A3I Phase llI Software Detailed Design Document Page 14

4.1.5 Aerodynamics & Guidance Model (AGM) CSCI

The MIDAS AGM is a two-part model representing rather generic helicopter guidance and
dynamics for uncoupled controls. Given the current position, orientation, and angular rates, the
guidance portion of the model determines the control inputs required to fly to the next waypoint
with its associated position, altitude, and airspeed. The aerodynamics portion of the model uses
the computed controls to determine the helicopter's next postion, orientation, etc., based on the
simulation tick interval. One of the specific desires this phase was to convincingly demonstrate
that A3I indeed had a viable aero model and that it could be used to provide vehicle position,
orientation, and rate information to other MIDAS components. To accomplish this task,
modifications were made to the existing code to use MultiGen graphic windows for displaying
the helicopter's pitch, roll, and yaw characteristics, as well as icons representing the simulated
cyclic, pedal, and collective inputs computed by the guidance portion of the model. The AGM
CSCI was also ported from the Symbolics computer to the IRIS 4D to take advantage of the
additional compute power and better Fortran environment. Finally, extensions were provided
which allow the user to select waypoints for the simulation using the mouse. Integration
between the AGM and Symbolic Modelling CSCI's was limited due to the effort required to
accurately portray the specific piloting activities required in the demonstration scenario.

4.1.6 Communications CSCI

The IRIS to Symbolics Communications software developed during Phase II was significantly
improved this phase by making it bi-directional and expanding the types of data passing
supported. Previously, only integer data types were sent using one-way communications from
the Symbolics to the Iris machines. During Phase III the capability to send character strings and
floating point data was added, along with the bi-directional feature needed to support a higher
level of integration among the MIDAS CSCIs. However, since most of the application
developments demonstrated during this period were "stand-alone" oriented, the major use of this
CSCI was to transmit position, orientation, rate, and limited engine parameters from the AGM to
the Views/CDE cSCrs for animation.

4.1.7 Training Assessment CSCI

Training assessment was greatly augmented and refined during Phase III. During Phase II,
an instructional system was assigned (by table look-up) to train each task by matching task
characteristics with attributes of instructional systems within the task's learning category.
The Phase III approach used ART (the Automated Reasoning Tool) and Common Lisp on
the Symbolics to develop a prototype knowledge-based system. This processes uses the
instructional systems design (ISD) process to assign each task a set of learning experiences
(such as explanation, demonstration, part-task training, and full task training) along with a
medium for each learning experience (such as textbook/workbook, interactive slide/tape,
lecture with visual aids, videodisc/CBT, CFT, CPT, OFT, WST without and with motion,
and the actual system). For each learning experience/media assignment, a time to train is
computed, based on the task, operator, and equipment characteristics. The Phase III
training approach was heavily based on previous work performed by the Logicon
Corporation under contract to the Air Force. Training assessment is accomplished on an
individual task basis, with no attempt made to address the grouping of tasks into lessons or
courses.

4.1.8 Scheduler

Work was also begun this phase on a dynamic reactive scheduling component to address the
sequencing and scheduling a pilot may perform as a means to control his task performance and
timeliness. While not committed to code during Phase III, significant headway into the specific
objectives and approaches for this state-of-the art component were achieved. Because it was not

A3I Phase llI Software Detailed Design Document Page 15

completed during the phase, formal documentation for the scheduler is not provided as part of
this Phase HI SDDD.

4.2 Demonstration Scenario

The Phase 1/I demonstrations consisted of a 30 minute introductory briefing by the
program director, followed by 1.5 hours of application demonstrations by the staff. The
"vertical slice" into the development process was emphasized as the attendee was
essentially "walked through" the conceptual development process for a potential
communication switch change on the AH-64A. The demonstration objective was to
describe the potential interactions and conflicts arising from moving the radio select button
from the ICS panel on the front bulkhead to the cyclic (as was done in the AH-1 flight test).
The capability for A3I to support three phases of the design process was stressed:
specification, static analysis, and dynamic analysis.

Beginning with the Views CSCI, the projected DMA gaming area was portrayed as the
mission environment and the inherent capabilities of visualization emphasized. Next, the
mission editing component of the Symbolic Modelling CSCI was introduced, along with
it's facilities to input the scenario for a unmasking maneuver combined with several radio
calls. The Aerodynamics & Guidance CSCI was then demonstrated in a stand-alone
fashion, traversing over simulated flat terrain and viewed in several perspectives.
Following the AGM, the CDE was demonstrated. Because of the maturity and visual
nature of this component, a fair amount of detail was provided--beginning with the
procedures to build an individual gauge, attaching it to a control panel, animating it, placing
it in a cockpit, building a vehicle structure around the cockpit, and finally, placing the
completed helicopter in the world prior to the simulation. As the last demonstration of the
MIDAS specification capabilites, the Symbolic Modellling CSCI was returned to. This
time it was used to portray a further decomposed mission with the design-dependent
operator activities fully described as a result of the symbolic equipment models for the
alternative communication switch configurations.

Jack was then used to perform some basic reach sequences in the AH-64A cockpit, using
the maximum ranges of the human model data. The fact that the operator could not reach
the panel-mounted communications panel when restricted to moving from the shoulder only
(simulating a locked inertial reel) was demonstrated. Additionally, the potentially
dangerous glare shield occlusion of the tailwheel lock and master arming switch was
shown for "taller" pilots by attaching Jack's camera to the mannequin's eye during an
animation sequence.

The Training Assessment CSCI demonstration was then conducted for two send-radio
message tasks with the alternative radio switch configurations. The input, output, and
processing characteristics of this component was described, as the attendees were shown
how a knowledge-based system operates.

The newly initiated applied vision models were then introduced through a briefing. An
Amiga-based prototype of the New York Association for the Blind's volume field of view
model was used to render the binocular retinal maps, facial occlusions, and physiological
blind spots for a series of mouse-selected fixation points.

The demonstrations were then concluded with the dynamic analysis capabili6es of MIDAS.
The fully populated cockpit was placed in the gaming area, driven by the aerodynamics and
guidance model, and viewed from several perspectives. A summary output screen from a
"simulation run" was then shown on the Symbolic Modelling color monitor. This screen
showed the loading and task timelines for the two potential designs and made use of

A3I Phase HI Software Detailed Design Document Page 16

different colors to describe physical resource conflicts between the scenario's flying tasks
and the radio selection actions. Approaches for hypermedia-like access to Boff &
Lincoln's Human Engineering Data Compendium (once it comes out on CD-ROM) was
then shown through a simulated key-word search. The intent was to describe how analysts
would be able to get extremely valuable context-sensitive information for areas such as

"performance under vibration" or "effects of the use of gloves" to make cockpit design and
mission decisions.

4.3 Programmatic Information

4.3.1 Risks

The majority of the risks faced by A3I during Phase III were management-oriented and not
technical in nature. They stemmed from unclear and conflicting development direction
combined with the fluctuating staffing situation. A program with the ambitions and scope
of this magnitude cannot tolerate a continuance of these problems.

One quasi-technical risk does exist and should be mentioned however. It centers on the
level of detail appropriate for the MIDAS design and analysis objectives. The Program
Office has made it clear that MIDAS is intended for the conceptual development phase of
crewstation design because of the high "payoff" for properly incorporating human
engineering principles during this period. However, most of the known human
performance models and analysis methods requires as inputs task, equipment, and
environmental data which is more appropriate for detailed design. This apparent conflict
between the model/analysis needs and the intended use of MIDAS is still unresolved. Its
resolution will have serious implications for the Program's success in developing a
prototype workstation which meets the needs of its projected users.

4.3.2 Summary of Results

The program had a tremendous response to the traditional end-of-phase demonstrations.
Begun in November 1988, these demonstrations were attended by approximately 170
people from NASA, the US Army, other DoD components, as well as several universities.
We were then asked by the Aeroflightdynamics Director to extend invitations to industrial
sources, particularly the major helicopter manufacturers. The detailed demonstrations
which resulted were actually conducted more as joint working groups and continued
periodically through April 1989. This activity precipitated a significant amount of effort
which can best be described as technology transfer. Lockheed Missiles and Space
Company used our CDE package and vehicle dynamics interface to demonstrate a proposed
Autonomous Underwater Vehicle concept. Boeing Commercial Aircraft Company spent
three days at our facilities, understanding the tools, walking through code, and taking both
software and documentation back to Seattle to set up a MIDAS-like design workstation at
their company. Finally, the Marine Advanced Amphibious Attack Vehicle (AAAV)
program office became very interested in the MIDAS capabilities, and we completed some
vehicle prototyping design work for their review. Similar activities with the Fiber-Optic
Guided Missile (FOG-M) program office and Boeing Helicopter Company also may
evolve.

The few criticisms which were levied essentially boiled down to three areas. First, a
number of people expected to see more explicit human performance models, especially in
the cognitive area. Functions such as decision making, planning, scheduling, etc were not
emphasized this phase. Even where present, such models were often embedded within the

A3I Phase llI Software Detailed Design Document Page 17

mission decomposition/simulation component complicating their observation. Additionally,
a number of attendees indicated they wanted more "hard analysis." People wanted to know
specifically how MIDAS could enable them to find the "best" design in terms of any
number of measures---both quantitative and qualitative. They also wanted to get to a
"bottom line" in terms of mission success, etc. While "bottom line" aspects have never
been a particular focus of MIDAS, significant room does exist for us to improve the
analysis capabilities included for design evaluation. Finally, a number of folks dug deeply
enough to see that we haven't yet reached the level of integration among the CSCIs which
is intimated. Distinct equipment models exist on both the graphic and symbolic sides.
Task information needed by the Training Assessment CSCI is not contained in the task
objects under the Symbolic Modelling CSCI. Jack was only demonstrated in a stand-alone
mode. The lack of a properly functioning simulation capability at the start of the
demonstrations certainly contributed to this criticism, However, the point is generally
accurate. The degree of integration among the CSCIs is not where is should be at this point
in the overall development--primarily because it is the most difficult area of all to manage.

A number of significant design decisions were made during the phase as part of the
development process. First, the previous plans for a multi-rate simulation executive (called
the Modeller in Phase II) were dropped. While theoretically possible, the effort involved
with supporting this approach outweighed the advantages. The ability to isolate and track
state changes which spawned conditional behavior throughout any number of simulation
objects was complicated by the fact that the tick resolution of individual objects may have
been inadequate to perceive the tliggedng conditions. Forcing the models to all run at a
nominal base rate was viewed as an acceptable and more mangeable alternative, since at this
stage in the program optimization considerations are not paramount. Secondly, the formal
use of desired states as mission goals which were separate from primitive operator activities
and operators is viewed as an important formalism to adhere to in future effort. This
approach will allow our existing framework to make use of a great deal of the formal
planning and goal directed behavior research ongoing at universities. Finally, the flexibility
and power to describe the temporal and logical relationships between tasks was improved
in a number of ways. Thirteen different temporal relationships were supported among
tasks versus only parallel and sequential during previous phases. Additionally, inheritance
restrictions between the children and parent nodes were removed allowing for a more
realistic decomposition.

4.3 Limitations

One salient limitation of Phase III involved the lack of a comprehensive simulation
capability. Because Phase III's detailed vertical slice into the mission entailed a radical
change within the simulation objects for the operator tasks, some of the methods,
constructs, and constraints used to support a simulation during previous phases were
incompatible. The coding effort required to correct these problems was not devoted in time
to instantiate a simulation capability with the new equipment models and component
functions. Consequently, a task analysis window containing "simulated" simulation
history information was used to convey our intended concepts. The absence of a full
simulation capability also decreased the emphasis placed on integrating various
components, such as the Aerodynamics & Guidance and Symbolic Modelling CSCIs,
during this phase. Limitations such as these are to be expected however, particularly when
a rapid prototyping approach is used and one attempts to pull together lots of disparate code
under time pressure.

The MultiGen modelling package used as the underpinning for the CDE also brought out
additional limitations, both programmatic and technical. First, a number of people were
interested in using the CDE CSCI for various applications, but decided against it because of
the relatively steep licensing fees. Additionally, MultiGen is a modelling package--not a

A3I Phase III Software Detailed Design Document Page 18

true CAD package. While this makes it easy and quick to use, it also precludes the
production or sharing of "manufacturing quality" designs, complete with precise
dimensions, etc. Because MIDAS is focused on the conceptual phase of development, this
aspect was initially not thought to be a problem. However, much of the using community
appears to want to use their actual CAD environment as a "home" for components such as
JACK or applied vision models. In lieu of that approach, the desired alternative was to use
the CDE output as their CAD input. Yet, data structure differences between MultiGen/CDE
and typical true CAD packages makes this goal unachievable.

Finally, dimension errors and scaling problems arose when trying to share cockpit
geometry information between the CDE and Jack CSCIs. While cockpits created using the
CDE can be "saved" in a format compatible with Jack, importing them involves a
considerable amount of tedious scaling and manipulation until they are proportional to the
anthropometric model size. These artifacts will make any reach, fit, and visibility
conclusions derived from these models questionable. The solution involves paying more
attention to detail when rendering the cockpit and making minor translation code changes.

4.4 Future Directions

The focus for new MIDAS capabilities will be be heavily influenced by the responses to
our Phase III demonstrations, program office direction, related research findings, the
funding outlook, and the capabilities of the staff. A couple of specific areas are known as
of this writing. First, a dynamic simulation must be restored to the core MIDAS
capabilities and the level of integration among the components must be expanded. Widely
varying mangement priorities and staffing situations have disrupted the attention paid to
these central features during Phase Ill--at a fairly significant expense. Secondly,
emphasis must be placed on developing the Symbolic Modelling CSCI to a level of
maturity and completeness commensurate with the other key components. Its role as the
central human model environment and simulation forcing function demands that it receives
a priority for resources and direction. Finally, during the next phase, the specific analytical
and evaluation oriented aspects of MIDAS must be brought to the forefront. It must be
clear how the MIDAS workstation improves the present itemtive, man-in-the-loop design
process.

These broad objectives will be realized through an internal project analogous to the AH-64
Apache Longbow program. Similar to the requirements of this on-going effort, we will
attempt to achieve a more integrated Apache cockpit by incorporating functions currently
performed with dedicated equipment into Multi-Function Displays (MFD). Using source
data from the Longbow Apache MFD, the current AH-64 task analysis, and our 3-D
graphic representation of the Apache, we will attempt to place the MFD into one of the
crewstations and use the MIDAS capabilities to guide the design of the new display, as well
as determine potential ramifications of its use in a simulated portion of a typical mission
segment. This "glass cockpit" design and analysis emphasis dictates new requirements for
almost every A3I CSCI which will hopefully become clearer in the months ahead.

A3I Phase iil Software Detailed Design Docunient Page 19

5. HISTORICAL INFORMATION

5.1 Phase I Development

5.1.1 Requirements and Design Approach

5.1.1.1 Summary Level

The initial phase of development of the prototype HF/CAE workstation found the Program
in serious danger of extinction due to insufficient funding caused by regular and sizable
cuts from guidance funding levels. It was believed that a visually-compelling, proof-of-
concept demonstration was required to communicate the essence of the Program to
individuals unfamiliar with the particulars of the science involved. Maximum visual utility
was demanded of every expenditure and development.

A baseline simulation capability was required that demonstrated mission modelling, human
performance metrics and helicopter-pilot interactions within a controllable, time-stepped
environment that provided multiple graphic "views" into the underlying model(s). The
simulation needed to be incrementally extensible, hence only a framework for more
elaborate modelling was required for this phase, given the time constraints imposed.
Several areas of development emphasis were identified:

5.1.1.2 Mission Modelling

The overall A3I Program model architecture calls for a mission model driving the closed
loop pilot-vehicle system. The model would be developed with a dynamic, interactive task
analysis framework for systematically describing tasks involved in certain classes of
advanced helicopter operations. The framework will provide a feasibility demonstration of
the methodology, including all critical mission and flight management functions within a
pre-specified sample scenario.

Typically, scout-attack helicopter missions are largely opportunistic or discretionary in
nature. Consequently, the mission model generated by the mission decomposition
methodology must allow this component to be represented, either by providing conditional
branching based on some pilot model parameter, or stochastic event triggering.

Bolt, Beranek and Newman (BBN) had already started development (under a NASA
contract initiated prior to the PDR) of a "Mission Decomposition Methodology" that would
provide essentially the entire simulation structure for Phase I. Refer to the respective
software component description document for the Phase I Mission Editor for details.

In order to drive and manipulate the specific mission model generated by the Mission
Decomposition Methodology, a simulation executive was required that allowed greater user
control of the simulation than conventional executive programs. Future integration of a

vast number and variety of models within this executive structure was projected as well,
hence flexibility as well as functionality was required. Refer to the software component
description document for the Phase I Modeller for details.

Communications software was required to link the Symbolics 3670 running the mission
model with the Silicon Graphics IRIS 2500T displaying dynamic, 3-D graphic views
driven by the mission. The link was Ethemet under TCP/IP protocol. Refer to the
software component description document for Phase I Communications for details.

5.1.1.3 Graphics

A3I PhaselIl SoftwareDetailedDesignDocument Page20

3-D, color, dynamic mission representation displays were required to provide intuitive
understanding of simulation progress. Further, these so-called "views" became extremely
valuable as debugging aids for programmers developing software on the system. Refer to
the software component description document for the Phase I Graphic Views for details.

In addition to view graphics, a state display editor was required to allow designers to select
appropriate model variables for run-time observation, and determine how and where the

values were to be displayed. This tool allowed designers to individually select which
simulation variables were of interest for monitoring, and the nature of their display (i.e.
dial, bar, graph, etc.). Refer to the software component description document for the
Phase I Icon Editor for details.

5.1.1.4 Human Performance Modelling

The first phase needed to demonstrate the capability to model, structure and analyze the
human component of complex and interactive pilot-helicopter systems by elucidating the
effects of human performance limitations on mission effectiveness. The mission had to be
responsive to changes in pilot performance, and conversely, the pilot's loadings should be
reflected in task loadings imposed by execution of the prescribed mission.

It was decided that emphasis should be placed on developing some meaningful
demonstration of training effects as provided by profiles of novice and experienced pilot
representations. Refer to the software component description document for Phase I
Training Implications for details.

5.1.1.5 Demonstration Scenario

The demonstration scenario consisted of the capability to perform multiple consecutive
simulations. Variables included:

1)

2)

A novice and experienced pilot profile that may be menu-selected
prior to a simulation run to illustrate training effects.

Convoy return of missile fire at any point in the mission subject
to the discretion of the designer.

It was possible to have extensive run-time control over the running of models from menu
items. It was also possible to examine data and information both after the run, and during a
model freeze state. Menu selection of these capabilities required no programming
experience to start, operate and evaluate the simulation.

5.1.2 Hardware Environment

Figure 5 below indicates the Phase I hardware configuration. These components are
described in further detail in the subsections which follow.

A3I Phase lil Software Detailed Design Document Page 2!

TCP/IP ETXERNET

SYMBOLICS

3670 l I_APE

B&W

MONITOR

KEYBOARO

I COLOR [

DISPLAY]

Figure 5. Phase I Hardware Configuration

5.1.2.1 Symbolics Lisp Machines

Model 3670-1433 Color Workstation consisting of:

8MB Main Memory
Ethernet Controller and Transceiver

335 MB Fixed Disk
Monochrome Console

Keyboard & Mouse
SYS36 20 MB System Software
Documentation
Model CG70-FB02 High Resolution, 24-bits/Pixel Color Frame Buffer
Model CGOP-OIL 19" Color RGB Monitor

Model OP36-FPAI Floating Point Accelerator
Model CGSW-PKG Software Package consisting of:

SCGR-DYNA Dynamic Animation System
SCGR-PAINT Paint System
SCGR-GEOM Geometry System
SCGR-RENDER Rendering System

Symbolics # SLAN-FORT Fortran 77 Compiler
Symbolics # STCP-I TCP/IP Software

5.1.1.2 Silicon Graphics Computers

W-2500A Workstation consisting of:

1/4" Tape Drive
HU-T04 Turbo Option W/4MB RAM

H3-FPA Floating Point Accelerator
H-DM4A 1024x1024x4 Display Memory

H-ZC2 Z Clipping Assy,
C-WTCP IP/TCP Software
P-DBX Dial/Button Box

R-UNIF Fortran Compiler

A3I Phase IH Software Detailed Design Document Page 22

5.1.2.3

None.

5.1.2.4

Other Processors

Networking Hardware

TCL Incorporated Model 2010EC Ether'net Transceivers (tap-type)

5.1.2.5 Peripherals

Olddata Model 2410 Dot Matrix Printer

5.1.3 Software Environment

Generally, the graphic design and analysis tools were built using C, Unix, and the

Replicore 3-D modelling package. Lisp-based tools and models were built using
Symbolics Common Lisp under Genera 6.2, and the S-Packages were often used for

Displays. Communication software was written to enable inter-machine message passing
and simulation synchronization. The distribution of the Phase II models ,tools, and
displays is shown in Figure 3 below.

I TCP/IP ETHERNET [

S.G. IRIS

2500T

_ World View f']

Observer II

PlanView L_

REPLICORE 3-D MODELLER
ANIMATION EXEC.

,--Jl
Executive[I State

_ Inspectors[_ _ Displays I

Figure 6. Phase I Software Modules

5.1.4 Programmatic Information

5.1.4.1 Risks

The majority of Phase I applications developments were under contract or subcontract.
This condition poses some risk of failure caused by potential incompatibilities at the time of
integration, competing priorities inherent within respective organizations, lack of control

over developments and progress, and other problems that cannotbe treated or corrected by
the Program Office. While appropriate for this initial phase (due to constraints), each
instance of reliance on organizations that the Program Office does not have direct control
over should be carefully considered.

A3I Phase HI Software Detailed Design Document Page 23

Since the Phase I architecture was minimal, there were few technical risks (outside of

meeting deadlines) that might prohibit success. The major source of uncertainty involved
networking the Symbolics and IRIS through TCP/IP Ethernet. Unfortunately, late delivery
of graphics software forced a suboptimum (almost frenzied) approach to communications
debugging, since in-house staff did not have the necessary familiarity with TCP/IP protocol
details. Consultants were used to assist with debugging and optimizing the link.

5.1.4.2 Summary of Results

Preliminary demonstrations (of the mission model) were held in February 1986, followed
by the first of several formal Phase I demonstrations starting in late June 1986. The
demonstrations consisted of three computer displays (two in color):

1) Three-dimensional (3D), color, dynamic, mission representations

composed of world, pilot and plan views of the simulated mission.

2) Mission model set-up, control and data display.

3) Color iconic "state displays" providing continuous display of mission model
variable values.

The simulation executive (on the Symbolics 3670) controlling the mission model provided
appropriate data via EtherNet TCP/IP to 3D graphic "views" resident on the IRIS 2500T to
drive each dynamic simulation object. Mission model programming began in November of
1985, state display work began about the same time, while graphic display work started in
late January, 1986. Over 50 man-months of combined programming effort was dedicated
to this Phase, generating nearly 5000 lines of Fortran code (3000 in-house, 2000 contract),
1200 lines of C (in-house), and 7800 lines of Lisp (3800 in-house, 4000 contract) in this

eight month period.

Numerous design and implementation compromises were made in the fin-st phase of
development due to the severe time constraints (start 11/1, complete by mid June), and
minimal staffing available. Future phases must address more long-term strategic
approaches.

5.2 Phase II Development

5.2.1 Requirements and Design Approach

5.2.1.1 Summary Level

Phase II was intended to devise more long-term approaches to the development of the
workstation. Another primary purpose was to assemble a team of individuals (both in-
house and outside) appropriate for this activity. This team would be composed of both
researchers and implementers, since the Program's approach is to employ contemporary
techniques to integrate the best models of human behavior/performance, vehicle/systems
and environment available.

Phase I had succeeded in demonstrating that the concept of a prototype workstation for

aiding early helicopter cockpit design with regard to human performance limitation was
viable. The implications of attempting to develop such a system were also more clearly
understood after Phase I. The purpose of Phase II was to:

1) Develop modelling and simulation tools

A3I Phase lII Software Detailed Design Document Page 24

2) Develop graphics tools
3) Integrate 6 DOF helicopter dynamics
4) Develop a more representative mission
5) Design and implement a more modular architecture
6) Gain additional insight into modelling and the design process
7) Build an appropriate in-house implementation team
8) Establish working relationships with various centers-of-excellence

At the completion of Phase I it was evident that more long-term strategies to development
would have to be adopted if the Program were to ultimately succeed. It was also
recognized that a more active effort was necessary in the area of integration of research
results if less mature fields such as human-computer interaction and predictive human
modelling were to gain any acceptance.

New software development requirements in Phase II centered around modelling
environment, pilot models, vehicle/systems models, world models, analysis and decision
aiding, and user interfaces Work Breakdown Structure (WBS) elements. The specific
applications chosen are described in the subsections that follow.

5.2.1.2 Modelling Environment

5.2.1.2.1 Mission Editor

Development of the Mission Editor continued in Phase II under subcontract with BBN with
domain expertise and integration supplied by in-house staff. BBN designed a graphic
editing interface utilizing the mouse and pop-up menu templates to relieve the user of Lisp
code editing. A manual decision interface was also implemented to override the previous
"selection by aspect" method of simulated pilot decision-making. The Mission/Task Editor
is an application initially developed BBN that serves as the human performance modelling
framework whereby more elaborate computational models of human behavior and

performance may be installed or "activated" in the workstation contingent on the type and
level of analysis required to answer a particular question. For example, the framework
provides a default toplevel directed acyclic graph form of human task modelling that can be
used to evaluate task sequencing and resultant human resource loadings (visual, auditory,
cognitive and psychomotor) based on empirical data. However, it is possible to integrate
detailed predictive computational models of human performance such as dynamic
anthropometric models that are able to compute rates, durations, reach, comfort factors and
other parameters. These detailed models can be utilized as an alternative to the more

subjective toplevel empirical models that the system provides by default. The framework
also provides interfaces to simulation models of the vehicle/systems and environment at
various levels of abstraction. Most importantly, the framework provides contingent task
behavior subject to vehicle and environmental state variables. Refer to Appendix 1 of the
Phase II System Architecture Description Document (SADD) for details.

5.2.1.2.2 Modeller

The Modeller serves as the Phase II simulation executive. It provides all modes of
interaction with the simulation, including build/edit, test/verify, experiment frame, run,
analysis and document/report. The ultimate goal of the Modeller is to provide the complete
environment for construction, integration, testing, simulation analysis and reporting of
results. The most developed mode of the Modeller is the run mode, whereby the user
controls the execution of the simulation models. Model selection, data specification and
run-time display (state-displays and views) configuraton is privided through the experiment
frame mode of the Modeller. Refer to Appendix 2 of the Phase II SADD for details.

A3I Phase lH Software Detailed Design Document Page 25

5.2.1.2.3 Visual Modeller

The Visual Modeller is a prototype visual programming language for dynamic systems
modelling developed under subcontract by Expert-Ease Systems Inc, of Belmont, CA. It
allows the user to select components such as dividers, summers, integrators, sources and
sinks from an extensible library of components and assemble them on a .graphic
"worksheet" to form working models. Connections between component input and output

ports are make graphica[.ly, as is specification of initial conditions and parameters. Models
are subsequently run as interpreted code (versus compiled) subject to boundary conditions
(start time, end time, step size) supplied by the user. The application was initially
developed as a stand-alone tool for evaluation, hence it has yet to be integrated with other
MIDAS workstation elements. It is anticipated that some form of visual programming
language will be developed for the Modeller build/edit mode that utilizes the same type of
interface as the Visual Modeller. This tool would become the primary means of developing
and integrating vehicle/systems and world models for the simulation. Refer to Appendix 3
of the Phase II SADD for details.

5.2.1.2.4 State Display Editor

The State Display Editor is an enhanced version of the Phase I Icon Editor, which is based
on the Graphics Editor from Steamer, an application developed by BBN for the Navy
Personnel Research and Development Center (NPRDC) in San Diego, CA. The State
Display Editor is used to conveniently build displays composed of graphs, bars, dials,
sliders, text, etc. for indicating the state of some selected dynamic variable during a
simulation. The user interface has been substantially reworked to mimic the Apple
Macintosh desktop metaphor. It also takes advantage of improvements to the Symbolics
operating system (Genera 7.1) such as infinitely scrollable windows in both vertical and
horizontal dimensions. Other features added to the original Icon Editor include
"Macintosh-like" text handling, keystroke commands (to supplement pull-down menus)
and numerous bug fixes that had existed from the original Steamer code. No programming
is required to use this tool. Refer to Appendix 4 of the Phase II SADD for details.

5.2.1.3 Pilot Models

5.2.1.3.1 Anthropometric Model

The A3I Anthropometric Model was developed under a NASA/Ames grant to Dr. Norman
Badler at the University of Pennsylvania's Department of Computer and Information
Science. Based on Dr Badler's previous work, the POSIT/HIRES model provides human
body dimensions, reach and position based on CAR (Crewstation Assessment of Reach,
Boeing Corp.) database link sizes, driven by task/goal specifications (HIRES). Unlike
other systems that statistically utilize anthropometric databases, POSIT allows the user to
specify each link independently and establish motion constraints for any link or joint in the
model. Since the anthropometric model is an ongoing research effort at the University of
Pennsylvania, a working version of POSIT was not recieved by the Program until 1 month
prior to the end of Phase II. Consequently, the capabilities of the system were
demonstrated off-line as a stand-alone system, although the graphic databases generated by
other MIDAS workstation tools were immediately made compatible with POSIT/HIRES, as
well and the Mission/Task Editor's output. Future Phases of the Program will see
integration of the next generation of POSIT/HIRES (JACK/GOALTENDER), which is
expected to include dynamics and field-of-view modelling capabilities. Refer to Appendix
5 of the Phase II SADD for details.

5.2.1.3.2 Loading Model

A3I PhaseIll SoftwareDetailedDesignDocument Page26

The loading model currently used to measure human performance is based on data
accumulated at the Army Research Institute at Ft. Rucker, AL, that was subsequently
committed to computer hardware within a modelling framework developed by BBN. The
model generally states that task performance requires human resources from visual,
auditory, cognitive and psychomotor (VACP) dimensions. This approach is loosely based
on Chris Wickens Multiple Resource Theory and subsequent model implementation by
Aldrich & McCracken at Anacapa Sciences Incorporated. The data from ARI is based on a
survey of active helicopter pilots who were asked to estimate the VACP loadings for
various tasks on a scale of 0-7, given very specific guidelines and criteria for each level in
that range. The advantages of this approach are visibility, simplicity, and intuitive appeal.
The disadvantages are that VACP values obtained from the survey are context dependent,
thus to model variations in loading as a function of vehicle/system or world state, as well as
pilot variables (training level, stress, fatigue, workload) there is no empirical data available
to support alteration of baseline VACP values as a function of these variables.

5.2.1.4 Vehicle/Systems Models

5.2.1.4.1 Dynamics and Guidance Models

The type of helicopter dynamics and guidance models used in Phase I were discrete point-
mass. These models did not provide the necessary data in translational and rotational
degrees of freedom to analyze vehicle orientation (pitch, roll, yaw) as a function of control
movements. The dynamics model used in Phase II had been used at Ames previously in
motion simulation studies on VAX VMS hosts, thus the majority of the effort required to
use this model was a port to the Symbolics computer. This, however, was not a simple
task due to compiler differences and the Program's need to "package" models in a modular
fashion that simplifies integration and interaction with other code, most notably Lisp. The
guidance routines were also based on existing code used in motion simulator facilities,
although extensive enhancements were required and performed by Anil Phatak and Huan
Tran of Analytical Mechanics Associates (AMA), Inc. These included outer-loop speed,
horizontal and vertical path control feedback to provide path following that was more
representative of real pilot strategies. An important lesson learned in Phase II was that it is
not advisable to attempt to integrate models that are still undergoing development into a
system that itself is evolving, particularly when there axe language compatibility
complications (e.g. Fortran and Lisp). Although this was necessary in Phase II due to time
constraints, future Phases should avoid this through better planning.

5.2.1.4.2 Cockpit Display Editor

The Cockpit Display Editor (CDE) is a new application developed for the construction and
editing of cockpit displays and controls. Its interface is based on the Multigen visual
database editing program developed by Software Systems of San Jose, CA. Software
Systems and Sterling Software entered a joint development agreement which allowed
Sterling source code rights to the Muhigen software in exchange for developing
enhancements to Multigen (described in the Graphic Views SCDD). The CDE is 3-D,
color, dynamic, and has a user interface modelled after the Apple Macintosh. Displays can
be conveniently linked to model parameters, or animated from stored datafiles. The CDE
contains the database of all positional and geometric attributes of displays and controls in
the simulated cockpit. This database will eventually be utilized by human behavior and
performance models such as signal detection and visibility to analyze optimal
instruments/control placement.

5.2.1.5 World Models

A3I Phase l!.l Software Detailed Design Document Page 27

5.2.1.5.1 World Models

World models have not changed significantly over Phase I, with the exception of replacing
flat terrain and gaussian hills with Defense Mapping Agency (DMA) terrain data.
Architecturally, considerable effort was devoted to separating the simulation of world
objects from pilot and vehicle/systems simulation models in anticipation of migration to
distributed or parallel processing hardware.

5.2.1.5.2 Views

Geometric representations of world objects have changed appreciably from Phase I with the
addition of enhanced Multigen software. As mentioned in world models, flat terrain and
gaussian hills have been replaced with (DMA) terrain data, and objects/vehicles have real-
world dimensions since they were obtained form a simulator out-the-window visual system
database (Singer-Link DIG). The DMA data can be read directly off a tape and transformed
into a 3-D, colored image by the graphic modelling system. The simulation views have
been enhanced as well, since Multigen features provide interactive, Macintosh-like editing
of objects (it is an object-oriented editor) and subsequent viewing with 3 translational and
rotational degrees of freedom. Model-driven or stand-alone animation of objects is also
provided as a feature that was added to the basic Multigen software.

5.2.1.6 Analysis and Decision Aiding

5.2.1.6.1 Training Requirements Prediction

The impact of training was demonstrated in Phase I by providing 2 types of pilot models
(skilled and novice) and comparing the performance results in a simulated mission for each
case. The two models were based on the assumption that on the average, a less skilled

pilot requires longer and perceives a higher (VACP) load in task performance than a skilled
pilot. Phase II endeavored to demonstrate that it would be possible to perform an analysis
of a simulated mission's tasks and extrapolate the training resource requirements necessary
to train an individual to perform such a mission. The approach drew heavily from

Instructional System Development (ISD) methodolo .gies. Hence the focus was upon post-
simulation analysis and training requirements estimation, rather that attempting to show the
effects of skill level variations on mission performance. Both are considered important for
the MIDAS workstation.

5.2.1.7 Demonstration Scenario

The Phase II Scenario involved walking demonstration attendees through a simulated
mission and cockpit build, anthropometry analysis, and task loading/timeline inspection.
Emphasis was placed on "running" as many components together in an integrated fashion
for a slight derivative of the Ambush Scenario first started during Phase I.

5.2.2 Hardware Environment

Figure 7 below indicates the Phase II hardware configuration. These components are
described in further detail in the subsections which follow.

A3I Phase HI Software Detailed Design Document Page 28

[_] 45MB 1/4"

TAPE

SYMBOLIC . B

I

l IRIS I '_,J

I 45MB 1/4

I 32BIT]TAPEcoLOR

ppINTERFACE
SWITCH

_ [iDOoktiMat_ixl

SYMBOLIC5
3675

FPA

45MB 1/4"
TAPE

Figure 7. Phase II Hardware Configuration

5.2.2.1 Symbolics Lisp Machines

Model 3675 Color Workstation consisting of:

Monochrome Console

Keyboard & Mouse

45 MB 1/2" Cartridge Tape Drive
Ethernet Controller and Transceiver
12 MB RAM

Enhance Performance Option
474 MB Fujitsu Eagle Disk
515 MB CDC Disk

Model CG70-FB02 High Resolution, 24-bits/Pixel Color Frame Buffer
Tektronix 19" Color RGB Monitor

Model OP36-FPA1 Floating Point Accelerator

Symbolics # SLAN-FORT Fortran 77 Compiler
Symbolics # STCP-I TCP/IP Software

Model 3640 Color Workstation consisting of:

Monochrome Console

A3I Phase IH Software Detailed Design Document Page 29

Keyboard& Mouse
Ethernet Controller and Transceiver
6MB RAM
2-140 MB Disks
CADBuffer
Tektronix 19" Color RGB Monitor
Symbolic* # SLAN-FORT Fortran77 Compiler
Symbolic* # STCP-1 TCP/IP Software

Model 3620 Monochrome Workstation consisting of:

Monochrome Console
Keyboard & Mouse
Ethemet Controller and Transceiver
4MB RAM
368 MB Disk
Symbolic* # SLAN-FORT Foman 77 Compiler
Symbolic* # STCP-I TCP/IP Software

5.2.2.2 Silicon Graphics Computers

W-2500A Workstation consisting of:

45 MB 1/2" Cartridge Tape Drive
Ethemet Controller and Transceiver
HU-T04 Turbo Option W/4MB RAM
H3-FPA Floating Point Accelerator
H-DM4A 1024x1024x4 Display Memory
H-ZC2 Z Clipping Assy
C-WTCP IP/TCPSoftware
P-DBX Dial/Button Box
R-UNIF FortranCompiler

W-3120 Workstation consisting of:

Ethernet Controller and Transceiver
H3-FPA Floating Point Accelerator
H-DM4A 1024x1024x4 Display Memory
H-ZC2 Z Clipping Assy
C-WTCP IP/TCP Software
P-DBX Dial/Button Box

5.2.2.3 Other Processors

Digital Equipment Corp. MicroVax H

5.2.2.4 Networking Hardware

TCL Incorporated Model 2010EC Ethemet Transceivers (tap-type)

5.2.2.5 Peripherals

Okidata Model 2410 Dot Matrix Printer
Apple LaserWriter Plus Laser Printer
GraphOn Graphics Terminal

5.2.3 Software Environment

A3I Phase III Software Detailed Design Document Page 30

Generally, the graphic design and analysis tools were built using C, Unix BSD 4.3, and
the IRIS Window Manager/Graphics Library II. The Multigen modelling package was

used as the underpinnings for the CDE and Views components. Most Lisp tools and
models were built using Symbolics Common Lisp under Genera 6.2, with the Flavors
extension, and the S-Packages were often used for for Displays. Communication
software was written to enable inter-machine message passing and simulation

synchronization. The distribution of the Phase II models,tools, and displays is shown in
Figure 8 below.

ICOCKPIT DISPLAY
S.G. IRIS EDITOR

3120

POSIT

C_!t Budd

Iris Color Display

OFFLINE

TCP/IP ETHERNET l

Jl II

IANIMA'noNexee. I MIISSIONI EDITOR

I World V_ew _ 1

Pilot View
Plan View

Fl.v-thru

IrisColor Display

3-D "VIEWS"

Models

Editors

Inspectors

Sym.. B&W Display

SIM. EXEC

Sym.. Color Display

DISPLAYS

Figure 8. Phase II Software Components & Displays

5.2.4 Programmatic Information

5.2.4.1 Risks

By the end of Phase II there were 6 subcontracts and 1 NASA grant under the management
of in-house implementation staff. This represents a sizable risk that the contributions of
these subcontractors be appropriate, cost-effective and carefully monitored. The limited
funds of the Program could not tolerate any waste of manpower or funds.

The decision to attempt to integrate discrete-event Lisp-type and continuous Fortran-type
models in Phase II, without the benefit of a specialist in simulation modelling, could have
proven to be a disaster. Although successful, the process was inefficient and frustrating.
Future attempts at such model integration must be made with the aid of an expert in
simulation modelling.

Hardware technological risks were again minimized by the use of standard, proven
computers and software. Communications was TCP/IP protocol, and special hardware had
been purchased to monitor network data packets in the event of any problems.

The composition of the in-house implementation staff is currently engineers, programmers,
mathematicians, computer scientists, physicists and a helicopter pilot. There are no
cognitive psychologists or human factors specialists. This is a serious void for a team

A3I Phase H! Software Detailed Design Document Page 31

developing a prototype workstation for human factors analysis. Nonetheless, this void has
been temporarily filled by subcontracting for this expertise.

5.2.4.2 Summary of Results

The first set of demonstrations was conducted for NASA and local personnel on October
22, 1987, followed by numerous scheduled and non-scheduled demonstrations over the
course of the next 6 weeks. The feedback was without exception positive, although it
became clear, after several comments, that in the next phase of development it would be
necessary to address some concrete design issues rather that remaining general and abstract
with regard to what the MIDAS workstation could accomplish.

Late in Phase U the Program Office obtained a Chief Scientist to direct ongoing research
activities that axe slated for eventual integration in the workstation. This addition
tremendously improves the Program's ability to evaluate and respond to new research
results that may be relevent to the design of complex man-machine systems. Similarly, two
consultant subcontractors involved with the Program have extensive experience in the field
of human behavior and performance modelling.

As Phase II was aimed at more long-term, strategic approaches, there will be a substantial
amount of code reuse as well as coding momentum carried into Phase III. This momentum
is further facilitated by reasonable success in assembling a team of individuals with
appropriate skills and interests for this Program. These interests include human
behavior/performance modelling, training, graphical modelling languages, integrative
frameworks, decision aiding and user interfaces.

6. APPENDICES

6.1 Glossary, Definitions, Abbreviations

A3I
AGM
AMA
ART
BBN
CAD
CBT
CDE
CFT
CPS
CPT
CSCI
DTED
DMA
DOF
EES
HF/CAE
YO
ISD
MFD
MIDAS
NFS
NRC CoHF

Army-NASA Aircrew/Aircraft Integration
Aerodynamics/Guidance Model
Analytical Mechanics Associates, Inc.
Automated Reasoning Tool
Bolt, Beranek and Newman Laboratories, Inc.
Computer-Aided Design
Computer-Based Training
Cockpit Design Editor
Cockpit Familiarization Trainer
Computer Program System
Cockpit Procedures Trainer
Computer Software Configuration Item
Digital Terrain Elevation Data
Defense Mapping Agency
Degrees-of-Freedom
Expert-EASE Systems, Inc.
Human-Factors Computer-Aided Engineering
Input/Output
Instructional Systems Development
Multi-Function Display
Man-machine Integration Design & Analysis System
Network File Software
National Research Council Committee on Human Factors

A3I Phase lII Software Detailed Design Document Page 32

OFF
SCDD
SGI
USGS
WST

Operational Flight Trainer
Software Component Description Document
Silicon Graphics Inc.
United Stated Geological Survey
Weapon System Trainer

A3I Phase llI Software Detailed Design Document Page 33

1 ANNEXES

ANNEX A -- SYMBOLIC MODELLING CSCI

ANNEX B -- VIEWS CSCI

ANNEX C -- COCKPIT DESIGN EDITOR CSCI

ANNEX D -- ANTHROPOMETRIC MODEL "JACK" CSCI

ANNEX E -- AERODYNAMICS�GUIDANCE CSCI

ANNEX F -- COMMUNICATIONS CSCI

ANNEX G -- TRAINING ASSESSMENT CSCI

Annex A

Army-NASA Aircrew/Aircraft Integration Program

A3I

Software Detailed Design Document:
Phase III Symbolic Modelling Software

prepared by

Jerry Murray

December 1988

Table of Contents

1.0 INTRODUCTION .. A-1
1.1 Identification .. A-1

1.2 Scope .. A-1
1.3 Purpose ... A-1

2.0 RELATED DOCUMENTS .. A-2

2.1 Applicable Documents ... A-2
2.2 Information Documents ... A-2

3.0 REQUIREMENTS AND DESIGN APPROACH .. A-3
3.1 Background ... A-3
3.2 Requirements and Rationale .. A-5
3.3 Hardware Environment ... A-6
3.4 Software Environment .. A-6

4.0 DETAILED DESIGN DESCRIPTION .. A-7

4.1 Organization .. A-7
4.2 Basic Concepts ... A-8

4.2.1 Global Variables .. A-8
4.2.2 Entities ... A-10

4.2.2.1 Entities Overview ... A- 10
4.2.2.2 The Entity Flavor ... A-12
4.2.2.3 Static Enities ... A-12

4.2.2.4 Dynamic Entities .. A-13
4.2.2.4.1 The Dynamic-Entity Flavor A- 13
4.2.2.4.2 Functional Entities ... A-14
4.2.2.4.3 Active Objects .. A-15

4.2.3 Utilities .. A-16
4.3 Environmental Modelling ... A-17

4.3.1 Environmental Modelling Overview ... A- 17
4.3.3 Terrain Modelling .. A-18

4.3.3.1 Terrain Objects .. A-18
4.3.3.2 Digital Elevation Model (DEM) Arrays A-20

4.3.4 Feature Modelling .. A-21
4.3.7 Other Environmental Objects .. A-21

4.4 Equipment Modelling .. A-22
4.4.1 Equipment Modelling Overview .. A-22
4.4.2 Equipment Modelling Objectives ... A-24
4.4.3 Component Modelling ... A-24

4.4.3.1 Component Modelling Overview A-24
4.4.3.2 Functional Components .. A-25

4.4.3.2.1 Equipment Component Basic Flavor A-25
4.4.3.2.2 Equipment Component Example A-27

4.4.3.3 Physical Components .. A-29
4.4.3.3.1 Physical Component Basic Flavor A-29
4.4.3.3.2 Physical Component Example A-30

4.4.3.4 Component-Functions .. A-31
4.4.3.4.1 Component Functions Overview A-31
4.4.3.4.2 Component-Function Flavor A-33
4.4.3.4.3 Component Function Example A-33

4.4.5 Equipment Systems .. A-35
4.4.5.1 Equipment Systems Overview A-35
4.4.5.3 Equipment System Example ... A-36
4.4.5.2 Helicopter Modelling ... A-38

4.4.5.2.1 Helicopter Modelling Overview A-38
4.4.5.2.2 Guidance and Aerodynamic Requirements A-39

Table of Contents

5.0

4.5 Mission Modelling ... A-40
4.5.1 Mission Overview .. A-40
4.5.2 The Mission Flavor .. A-40

4.6 Pilot Modelling ... A-45
4.6.1 Pilot Modelling Overview ... A-45
4.6.2 Pilot Definition .. A-46

4.6.2.1 The Pilot Basic Flavor .. A-46
4.6.3 Activity Representation .. A-46

4.6.3.1 Activity Flavors ... A-46
4.6.3.1.1 Test-Activity Flavor A-46
4.6.3.1.2 Phase I and II Activity Flavors A-48
4.6.3.1.3 Sequential Activities A-49
4.6.3.1.4 Parallel and Parallel-stop Activities A-49
4.6.3.1.5 Rotation Activities ... A-49
4.6.3.1.6 Fixed Duration Activities A-49
4.6.3.1.7 Intermittent Activities A-49
4.6.3.1.8 Choice and Manual Choice Activities A-50

4.6.3.2 Complex Activities .. A-50
4.6.3.3 Activity Interactions with JACK A-50
4.6.3.4 Activity Interactions with Aero Modelling A-50
4.6.3.5 VACP Modeling .. A-51

4.7 Task Decomposition ... A-51
4.7.1 Task Decomposition Overview ... A-51
4.7.2 Task Decomposition Display .. A-52

4.8 Mission Simulation .. A-57
4.8.1 Overview .. A-57
4.8.2 Simulation Requirements .. A-58

NOTES .. A-58
5.1 Miscellaneous .. A-58
5.2 Limitations .. A-58
5.3 Future Directions ... A-58

5.3.1 Activity Scheduling .. A-58
5.3.2 Decision Modelling ... A-59
5.3.3 Aircraft Guidance ... A-59
5.3.4 Function Allocation .. A-59
5.3.5 Mission Modelling A-59

Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Symbolic Modelling SCI Organization .. 7
Entity Objects ... 11
Environmental Objects .. 17
Equipment Modelling .. 23
Transmitter Selector Switch ... 27
Component Functions ... 32
Communications Control Panel .. 36
Tactical Flight Profile .. 39
Pilot Model .. 46
Task Decomposition Display ... 53
Mission Simulation .. 59

A3I Phase III Symbolic Modeller CSCI Page A.1

1.0 INTRODUCTION

1.1 Identification

This document describes the Symbolic Modelling Software Configuration Item (SMSCI), which
forms a part of the A3I Computer Program System. Descriptions of the detailed processing
requirements, structure, I/O, and control are provided for each lower level Symbolic Modelling
Software Component (SMSC), unit, or function contained within the SMSCI.

1.2 Scope

The material in this document is directed toward three categories of readers:

1) those who wish to learn what the A3I SMSCI does,

2) those who wish to use the Symbolic Modelling software to investigate the interactions between
an operator and a specific crew station design within the context of a given mission,

3) those who might want to modify and update the Symbolic Modelling software.

This document attempts to describe the methodologies used to represent an object-orientecl.
simulation environment in which the operator's activities are sensitive to crew station eqmpment
design. Although some discussions of the mission, environment, general simulation issues and
pilot activity modelling are provided, they are provided as background, detailed discussions of
these issues are beyond the scope of this document. The primary focus of this document is to
present the Phase III SMSCI equipment functional and physical modelling methodology. This
methodology provides a means of explicitly demonstrating the sensitivity of specific pilot subtasks
to equipment design.

Knowledge of the Symbolics programming environment and object-oriented programming is
assumed along with a familiarity with Army aviation operations and task analysis.

1.3 Purpose

The purpose of the Symbolic Modelling Software Configuration Item is to provide a means of
modelling a given design of a crew station, a required mission, the intended crew, the
environments in which the crew station would be utilized, and the casual relations existing between
these models. The models and their associated casual relations interact to develop a task

decomposition which can be used for static design analysis or as a forcing function for a simulation
using specific design, mission, crew, and environmental characteristics. The simulation and the
resulting task histories are represented in the Simulation and Task Analysis SMSCs in a flexible
format amenable to a wide range of analysis.

This document presents the results of work accomplished during Phase III of the A3I Program. It
is important to understand that the primary objective for symbolic modelling in Phase III was to
demonstrate how an operator's activities could be modelled to be "sensitive to changes in crew
station design".

A3I Phase III Symbolic Modeiler CSCI Page A-2

Many of the functions and data structures used were selected on the basis of how they contributed
to achieving this objective. As is typical in any rapid prototyping environment, many of these
functions and structures will not be appropriate in future phases. However, attempts have been
made to present what is available in a manner which will support development in future phases.

A majority of the code developed in Phases I and II was not required to meet the current objectives
and not incorporated into Phase III. A significant portion of this code, however, does address
issues which remain major concerns of the A3I program and may be useful in future phases.
Although this document does not intend to supercede previous documentation concerning code
developed prior to Phase IV, the document does provide extensive information concerning the
relationship of code developed in previous phases and code developed during Phase HI.

2.0 RELATED DOCUMENTS

2.1 Applicable Documents

Symbolics Genera 7.2 Documentation, Symbolics Publication Number 999079,
Symbolics, Inc., Cambridge, Massachusetts, 1988.

Development of an Advanced Task Analysis Methodogy and Demonstration for Army-NASA
Aircrew/Aircraft Integration, BBN Laboratories, NASA Contract No. NAS2-12035

Engineering Data Compendium, Human Perception and Performance, Kenneth R. Boff and Janet
E. Lincoln, Harry G. Armstrong Aerospace Medical Research Laboratory, Wright-Patterson Air
Force Base, Ohio, 1988

Operator's Manual for Army Ah-64A Helicopter, TM 55-1520-238-10, Headquarters, Department
of the Army, 28 June 1984.

A Computer Analysis to Predict Crew Workload During LHX Scout-Attack Missions,
Anacapa Sciences, Inc. October 1984

2.2 Information Documents

A Representation for Complex Physical Domains, Sanjaya Addanki and Ernest Davis,
Proceedings of the Ninth International Joint Conference on Artificial Intelligence,
Los Angeles, Ca, August 1985

Maintaining Knowledge about Temporal Intervals, James F. Allen, Communications of the
ACM, 26(11), 1983

Setting up Large-Scale Qualitative Models, Brian Falkenhainer and Kenneth D. Forbus,
Proceedings of the National Conference on Artificial Intelligence, Saint Paul, Minnesota, 1988

A Comprehensive Task Analysis of the AH-64 Mission with Crew Workload Estimates and
Preliminary Decision Rules for Developing an AH-64 Workload Prediction Model,
Anacapa Sciences, Inc. October 1986

A3I Phase III Symbolic Modeller CSCI Page A-3

3.0 REQUIREMENTS AND DESIGN APPROACH

3.1 Background

Descriptions of complex man/machine/environment interactions can be structured along any of the
multiple dimensions of interest. Review of prior approaches to the analysis of helicopter mission
performance yielded some insight into potential pitfalls in such anal.yses. Prior characterizations of
helicopter missions generally follow a conventional timeline generation paradigm (Applied
Psychological Services, 1982a, b,c; Sikorsky Aircraft ARTI documents, 1984a,b,c,d), and, in the
case of Aldrich, Craddock and McCraken (1984), provide Monte Carlo simulated mission fly-outs
for compilation of workload metrics. Conventional timeline analyses have several characteristics
that make them inappropriate for the MIDAS workstation implementation. These deficiencies can
be summarized as follows:

- Hard-coded representation does not provide for flexible modification of the mission.

Large data bases are accumulated at a fixed, and generally very fine level of resolution.
Modification of the mission must be performed at a level of detail inappropriate to the
designer's main concern.

In conventional mission analysis, the analyst may establish procedures or make
assumptions in the decomposition of the mission that are generally difficult to
identify. This reduces the potential for an audit wail of analyst's decisions.

No common database has been established, therefore, there is no accumulation of

knowledge as a function of continued analysis, and little chance of independent
verification of the results of the analysis.

The Symbolic Modelling Software Configuration Item is designed for analysis of the man-machine
interactions in complex crew station during a typical mission. A major requirement for the SMSCI
is to integrate and interface the environmental, aircraft systems, mission, and crew models with
other SCIs to produce a driving function for mission simulation. In order to do this, it is necessary
to model the processes of the environment, equipment systems, mission and crew and the
relational complexity of these processes.

The requirements for environmental modelling include representation of terrain
elevation, features such as roads, and miscellaneous vehicles and systems.

Aircraft systems models are required to represent the basic aircraft and component
systems at adjustable levels of detail.

The mission model is the representation of actual mission requirements and associated
doctrine and procedures as normally presented in a operations briefing. It is not a
representation of the execution of a mission but rather a model which helps drive a
mission simulation and the standard by which the results of a simulation are evaluated.

Crew models are required to simulate various levels of training, experience, and
performance capabilities. These models must provide a mechanism for explicitly
representing the activities a crew member would performed in attempting to meet given
mission requirements. This mechanism must be cable of representing activities at a level of
detail appropriate to the designer's interests. The prime focus for the SMSCI in Phase III
centered on making the crew member's activities sensitive to system equipment design.

A3I Phase III Symbolic Modeller CSCI Page A-4

Development of a dynamic and interactive analysis methodology for investigating environment,
design, mission and crew interactions in the context of a mission simulation requires that the
designer have the freedom to modify any of the significant elements being analyzed at varied levels
of detail. In response, the simulation must provide for a reorganization and reordering of the tasks
executed by the pilot, and a recalculation of performance and workload metrics as a function of the
designer-imposed m changes. Standard decomposition procedures tend to have a "Bottom-up"
structure. The fundamental unit in these decompositions is a task which the aircrew must perform.
Aggregation of these tasks make up the mission structure. The Symbolic Modelling SCI takes a
different approach. In order to capture the characteristics that pilots bring to task performance, and
to provide the flexibility described above, the SMSCI employs two interacting perspectives to
guide the decomposition of the crew member's activities.

The f'trst perspective views the mission from the crew's goal structure in mission
performance with a "Top-down" perspective. This goal structure explicitlyrepresents
the goal-subgoal relations and is sensitive to mission modification.

The second "Bottom-up" perspective is that of a model based representation for the
fundamental task units which are derived from the system design style based on
functional and physical attributes. These fundamental task units define the actions a
crew member may perform in attempting to satisfy a goal or subgoal.

These two organizing perspectives were designed to be mutually supportive. They also interact in a
number of interesting ways. The methodology establishes two types of structures to represent the
tasks to be performed in a mission: as goals/subgoal activities of the aircrew or as model-based
task actions involved in each activity.

The SMSCI uses these structures to model a crew member's activities at an appropriate level of
detail. The goal/subgoal activity structures provide a means of representing a crew member's
ability to adapt his behavior to satisfy varying sets of goals. For some design problems, such as
function allocation, precise details concerning a activity actions may not be needed and the
goal/subgoal activity structures may be sufficient. For other design problems, specific details will
be needed concerning task action attributes. In these situations, it is necessary to map each subgoal
activity to task actions structures which represent a decomposition of the subgoal activity. These
actions structures have explicit representations of casual models which provide task performance
time, performance load, and other parameters which are dependent upon the functional/physical
characteristics of the given man/machine system. This approach allows a designer to examine a
mission from multiple perspectives while also providing a flexible system for representing
environment, equipment, mission and crew models. Concepts developed in this phase included a
method of relating operator activities to the appropriate equipment and a method of modelling the
equipment so that the functional characterization does not constrain the physical implementations of
a given function. This last concept allows a flexible environment for investigating alternative
designs for a required function.

The SMSCI provides for the integration of environment, equipment, mission, and crew models as
the forcing function for a tick-based mission simulation. The simulation has the form of a tree
consisting of objects. Each object in it has a parent (or is the top-level object) and each object has
component objects. At each beat of a driver clock, a tick message is sent to the top-level object (in
this case, the A3I simulator). It performs whatever procedures it has been programmed to carry out
during a tick, then passes the tick to each of its component objects. They carry out their tick
procedures, then pass the tick downward, and so on. This approach was taken to meet the design
goal of modularity. Anything that handles a tick message may be added to a list of component
objects. This architecture allows for great flexibility and modularity in building simulations.

A31 Phhsi_ III Symbolic Modeller CSCI Page A-5

Some of the objects in an A3I simulation are active objects. An active object is an object is used to
represent "intelligent" behavior and has a list of activities that it is carrying out. Examples of active
objects in the A3I simulation axe the pilot, helicopters and convoy vehicles (when their associated
operators are not explicitly represented). Equipment systems may also be represented as an active
object when it desired to model a specific behavior such as automated system functions. When an
active object receives a tick message, it sends a tick to each of its activities. Methods were
considered for implementing active objects at several levels of operational detail. This would allow
the A3I workstation to support mission analysis at varied levels of detail. For example, currently,
convoy activities are carried out only at the level of vehicular activity. In a larger-scale simulation
one would want higher-level organizations of individuals -- platoons or divisions, for example -- to
carry out activities that include creating and monitoring activities in their component objects. This
would provide the potential for a simulation and analysis capability for theatre, mission, and sortie
level operations using essentially the same software structures. Objects which are not active
objects axe able to respond to changes in state or the world by means of its tick procedures without
the necessity of modelling activities as a component of the model.

3.2 Requirements and Rationale

The requirements for the Symbolic Modelling SCI are:

1. Symbolic representation of the environment, including terrain models and other
vehicles and operators to the extent that they affect the primary operator's activities.

2. Symbolic representation of the operator's vehicle, crew station and associated
subsystems.

3. Symbolic representation of a mission for a complex, rotary wing aircraft.

. Symbolic representation of an operator performing tasks in a single-pilot,
complex crew station in which the operator's activities are sensitive
to the design of the crew station.

5. Integration of the symbolic operator model with anthropometric models.

6. Integration of the operator's vehicle with available aero models.

7. Integrate symbolic models with graphical models existing on other hardware
by means of an independent communications program.

. Produce a task decomposition and a simulation driving function which are
dependent on the interactions of the mission, operator, vehicle and
environmental models

A3I Phase III Symbolic Modeller CSCI Page A-6

The rationale the Symbolic Modelling SCI is built upon is based on the premise that the design of a
crew station must be evaluated within the contexts it will be operating. It is necessary for the
designer to be able to vary characteristics of the pilot, mission and environment in order to provide
the necessary contexts needed to evaluate design alternatives. Although current features of the
Symbolic Modelling SCI, and the A3I system in general, have been accepted as useful for
evaluating various design alternatives, the evolving design has not been limited to purposes of
evaluation but it intended to remain open to investigations of how the system may be useful in the
conceptual design process.

3.3 Hardware Environment

The Symbolic Modelling SCI software runs on the Symbolics 3600 series under Genera 7.2. The
associated simulation and task analysis CSCs required the Symbolics Color System hardware. The
simulation displays used in Phase lI ran on both HI-RES and CAD-buffer systems. A minimum of
8 megabytes of memory is recommended.

The SCI may also be run after recompilation on a Maclvory under Genera 7.3, however, the
associated Task Analysis CSCI requires a Symbolics Color System which is currently not available
on the Maclvory systems.

3.4 Software Environment

The Sy.mbolic Modelling software is written in Symbolics Common Lisp (Genera 7.2) with
extenswe use of the Flavor System for object oriented programming and the Symbolics Dynamic
Window and Presentation Substrate Systems.

The Symbolics TCP/IP System and the A3I Communication SCI is required for interfacing with
Views, JACK and the Flight Dynamics/Guidance SCIs which run on the Silicon Graphics
computers.

The associated simulation and task analysis modules required the Symbolics Color System
software including the Image Management (IMAN) system. The color simulation displays used in
Phase II ran on both HI-RES and CAD-buffer systems using software overlays effects that require
refining the internal color map which translates pixel data to actual video color data. This may
present conflicts with other windows using standard color map definitions.

A3I Phase III Symbolic Modeller CSCI Page A-7

4.0 DETAILED DESIGN DESCRIPTION

4.1 Organization

SYMBOLIC MODELLING CSCI

BASIC CONCEPTS

GLOBAL

MISSION PILOT [EQUIPMENT ENVIRONMENTAL

MODELLING MODELLING [MODELLING MODELLING

TASK
DECOMPOSITION

CSCI

RESULTS

SIMULATION TO
CSCI ANALYSIS

CSCI

Figure 4.1 Symbolic Modelling CSCI Organization

A3I Phase IH Symbolic Modeller CSCI Page A-8

4.2 Basic Concepts

4.2.1 Global Variables

Global variables are defined in the "CL-USER" package with an initial value of nil unless
otherwise noted. These definitions are in the file "Barracuda:>p3>sys>basic>globals.lisp" which
should be the frost file loaded.

A3I-ENITrlES

CURRENT-TIME

simulation objects.

List of all entity instances.

Time value used during a simulation. The simulation executive
increments this value by sending a "TICK" message to all top

DESIGN Used to store information concerning different design
alternatives. The functions for accessing information stored
in the variable axe presented below. Information may be stored
with the associated LISP functions.

FUNCTION RETURNS

(eval *DESIGN*) Symbol representing different
design alternatives.

NOTE: Phase III limited use of *DESIGN* to this method.
See Section 4.6.5.3.2. The following mappings were used:

panel-radio-selection = a design with radio selection made
with the transmitter selector switch

on the instrument panel.

remote-radio-selection = a design with radio selection made
by a remote switch on the cyclic.

level

(get *DESIGN* 'instance)

(get *DESIGN* 'evaluation)

(get *DESIGN* 'all)

An instance of a given design,
such as, an instance of an AH-64
with associated subsystems.

A design evaluation summary or
data structure used to store design
evaluation information.

A list of all known designs.

MISSION A Mission Flavor object. See Mission Modelling in Section 4.5.

A3I Phase III Symbolic Modeller CSCI Page A-9

SEE-MOUSE-BLIPS

TASK-DECOMP-FRAME

TD-TOP-MENU

TEST-ACTIVIT/ES

Used for mouse related activities in the task decomposition
frame. Changes in future phases should enable this variable
to be discarded. See future directions in Section 4.6.5.3.2.

The constraint frame used for displaying task decomposition.
See Section 4.6.5.3.2.

Used by the task decomposition constraint frame for selecting
menus. Changes in Phase 4 should enable this variable to be
discarded. See future directions in Section 4.6.5.3.2.

List of all test-activity instances. See Section 4.6.3.

The following variables were used in Phase III for demonstration purposes only and will not be used in
future phases.

A1 List of activities representing the results of a simulation using
a design with radio selection made the transmitter selector
switch on the instrument panel.

B1 List of activities representing the results of a simulation using
a design with radio selection made the remote selector switch
on the cyclic.

The following variables were used in the Phase II and are specific to an area in which the point of orgin
was arbitrarily defined as a point 10 miles south and 10 miles west of the simulation gaming area. See
the VIEWS CSCI Document for more details.

LOWER-LEFT-X-IN-FEET
LOWER-LEFT-Y-IN-FEET
X-CONVERSION-VALUE
Y-CONVERSION-VALUE

64741
65621
10.33
12.67

A3I Phase III Symbolic Modeller CSCI Page A-10

4.2.2 Entities

4.2.2.1 Entities Overview

Entities are static, functional, active or composite objects which exist within the context of a
simulation. Smile entities possess attributes which are not affected by the simulation and are used
to represent objects such as the terrain and roads. The attributes of a static entities may vary from
simulation to simulation as desired by the designer or by the problem definition but, once a
simulation is initialized, these attributes would not be affected by interaction with other entities and
a smile entity may be viewed as an object whose state does not change during simulation. If it is
necessary to change attributes of an entity during simulation in order to represent dynamic
properties or behavior, the entity should be represented as an dynamic entity which are further
defined as functional or active.

Functional entities represent objects which change state during simulation according to clearly
def'med functional models that are able to indicate state changes at the desired level of detail. Due
to the complexity of the systems in a crew station, these functional models will in most cases need
to be qualitative models. In many situations, it is necessary to explicitly represent causal
relationships between models.

Active entities have a complex mechanism for changing state during simulation which both
provides flexibility for defining the entity's behavior and a means of accessing details necessary
for analyzing various aspects of the object's behavior.

Whether an object should be represented as a static, functional or active entity depends more on the
objectives of a simulation than the specific nature of the entity. Static entities require significantly
fewer resources during a simulation than dynamic entities and should be used whenever possible.
The difference between functional and active entities is primarily the mechanism used to change the
attributes which represent the state of the entity during simulation. Active entities provide
flexibility and greater detail but also require significantly greater resources.

Composite entities are defined in context of their components which may be static, functional or
active. Composite objects should be defined using functional or active entity flavors as
components depending on the behavior desired.

A3I Phase III Symbolic Modeller CSCI Page A-11

The Symbolics Flavors system is used to represent entities within the symbolic modelling area of
the A3[system. The entity flavors are used as base flavors to provide basic attributes and
operations. The hierarchy of base items dependent upon the Entity flavor is shown below. This
hierarchy is modified depending upon whether the environment, the design of the crew station, or
the pilot is being modelled.

KILZI_X_I£

DYNAMIC

....... ----.
FUNCTIONAL-ENTITIES

FUNCTIONAL COMPONENTMODELS

EQUIPMENT PHYSICAL
COfv'PONENTS COMPONENTS

ACTIVE-ENTITIES

Figure 4.2 Entity Objects

A3I Phase III Symbolic Modeller CSCI Page A.12

4.2.2.2 The Entity Flavor

ENTITY'flavor

Def'mes the base flavor for ENTITY objects. Entity objects represent objects which exist
within the context of a simulation.

The following instance variables are used:
name >name of most specialized flavor component.
entity-type >Static, functional or active (defaults to 'static).

If the object is defined as a dynamic or active object,
then the entity-type will be set by either a functional
or active flavor component for the instance by
means of the default-init-plist.

location >this variable's structure is dependent on how we
integrate with the CDE models.

The BASIC-ENTITY flavor is a base flavor and does not have any specialized
flavor components.

(MAKE-INSTANCE BASIC-ENTITY :AFTER) method
Purpose: Provides means of accessing any entity through the global variable

A3I-ENTITIES which is list of entity instances.
Called by: (MAKE-INSTANCE DYNAMIC-ENTITY)
Returns: N/A

Side-affects: Adds each entity instance to list of entities in the global variable
A3I-ENTITIES

4.2.2.3 Static Enities

Static objects are used for representing entities which contain information necessary for the
simulation but which do not change state during the execution of a simulation. The terrain and
roads are examples of static objects. Static objects are defined with flavor definitions which
include BASIC-ENTITY as a flavor component.

A3I Phase III Symbolic Modeller CSCI Page A-13

4.2.2.4 Dynamic Entities

4.2.2.4.1 The Dynamic-Entity Flavor

DYNAMIC-EN'ITI'Y flavor

Defines the base flavor for DYNAMIC-EN'ITI'Y objects
The following instance variables are used:

current time >simulation time.

cycle-flag >not currently used. May be used to ensure all
simulation tick procedures have completed.

The following instance variables are inherited from BASIC-ENTITY
name >name of most specialized flavor component.
entity-type >Indicates entity type. Should not be set in this

flavor since it will be set by either a functional
or active flavor component for the instance by
means of the default-init-plist.

location >this variable's structure is dependent on
how we integrate with the CDE models.

This flavor has BASIC-ENTITYas a flavor component.

(TICK DYNAMIC-ENTITY :BEFORE) method
Purpose: Updates the objects simulation time value as the first action when the object

receives a TICK message.
Args: None
Called by: (TICK ENTITY)
Returns: N/A
Side-affects: Increments current time instance variable

(TICK DYNAMIC-ENTIq_ method
Purpose: usually not called because of method inheritance.
Args: None
Called by: Called as required.
Returns: N/A
Side-affects: Enables before and after methods to run.

(UPDATE-INSTANCE DYNAMIC-ENTITY) method

Purpose:

Args:
Called by:
Returns:
Side-affects:

Provided to enable before and after methods if a tick method is not provided

by the flavor which use DYNAMIC-ENTITY as a component flavor.
None
(MAKE-INSTANCE EQUIPMENT-COMPONENT :AFTER)
N/A
Enables before and after methods to run.

A3I Phase III Symbolic Modeller CSCI Page A-14

4.2.2.4.2 Functional Entities

Defines the flavor for FUNCTIONAL-ENTrFY objects
The following instance variables are used:

geometric-prop >this variable's structure is dependent on
how we integrate with the CDE models.
This variable is not being currently used.

functional-objects > a list of object names. These objects have
the potential to be functional during a simulation.
The concept of a generic object needs to be
implemented to provide access concerning
subcomponent objects if they are not instantiated
as functional-instances.

functional-instances -->a list of objects which have the potential
to be functional during a simulation.

functional-flag >flag used to activate functional objects.
If this variable is set to 'off or

'on-components-off at the time the object
is instantiated, the objects specified in
functional-objects will not be instantiated.

The following instance variables are inherited from DYNAMIC-ENTITY
current time >simulation time.

cycle-flag >not currently used. May be used to ensure all
simulation tick procedures have completed.

The following IVS are inherited from BASIC-ENTITY through DYNAMIC-ENTITY.
name >name of most specialized flavor component.
entity-type >Set to 'functional in the default-init-plist.
location >this variable's structure is dependent on

how we integrate with the CDE models.

(MAKE-INSTANCE FUNCTIONAL-ENTITY :AFTER) method
Purpose:

Args:
Called by:
Returns:
Side-affects:

Creates instances of functional components when an object is instantiated
unless the value of the IV functional-flag is 'off or 'on-components-off.
Ignored
(MAKE-INSTANCE DYNAMIC-ENTITY)
N/A

Sets functional-instances IV to instances of functional components.

(TICK FUNCTIONAL-ENTITY :AFFER) method
Purpose:

Args:
Called by:
Returns:
Side-affects:

Send a tick message to the functional component objects after the local tick
methods have completed.
None

Called as required.
N/A
Enables before and after methods to run.

A3I Phase III Symbolic Modeller CSCI Page A-15

4.2.2.4.3 Active Objects

Def'mes the flavor for ACTIVE-ENTITY objects
The following instance variables axe used:

activities >List of activities. In Phase II, all activities in this list
were active and it was not possible to indicate known
future activities. In future development, it will be
possible that have this list to represent both active
and future activities by adding an attribute to the
activity objects representing their status. This will be
important for planning functions.

activity-history >List of activities. In Phase II, this represented all
activities which were active or had been active. In
the future this should also include other activities,
such as required activities which were not performed.

The following instance variables are inherited from DYNAMIC-ENTITY
current time >simulation time.

cycle-flag >not currently used. May be used to ensure all
simulation tick procedures have completed.

The following IVS are inherited from BASIC-ENTITY through DYNAMIC-ENTITY.
name >name of most specialized flavor component.
entity-type >Set to 'active in the default-init-plist.
location >This variable's structure is dependent on

how we integrate with the CDE models and
is not currently being used.

(TICK ACTIVE-ENTITY :AFTER) method
Purpose: Controls running the activities in the activity list instance variable.
Args:
Called by:
Returns:
Side-affects:

None

Called as required.
N/A
Send a tick message to the activities objects after the local tick
methods have completed.

A3I Phase III Symbolic Modeller CSCI Page A-16

4.2.3 Utilities

The following functions are defined in the file "Barracuda:>p3>sym>basic>utilities.lisp".
functions are general utilities which may be called as needed.

The

CONVERT-X-IN-FEET-TO-PIXELS function

Purpose: Finds pixel value for a value for X given in feet.
Args: An integer representing longitude (X) in feet.
Returns: Corresponding pixel value for longitude.
Notes: This function depends on corresponding values for

lower-left-x-in-feet and *x-conversion-value* in order
to return appropriate pixel values.

CONVERT-Y-IN-FEET-TO-PIXELS function

Purpose: Finds pixel value for a value for Y given in feet.
Args: An integer representing longitude (Y) in feet.
Returns: Corresponding pixel value for longitude.
Notes: This function depends on corresponding values for

lower-left-y-in-pixels *lower-left-y-in-feet* and
y-conversion-value in order to return appropriate
pixel values.

CARTESIAN-DISTANCE function

Purpose: Finds 2d distance between points
Args: xl yl x2 y2
Returns: Integer representing distance between points.

INTERPOLATE function

Purpose: Perform linear interpolation to point 3 from points 1 and 2.
Args: xl yl x2 y2 x3
Returns: Value for y3.

Note ifxl = x2, yl is the value returned.

CONVERT-TO-DEGREES function

Purpose: Find the angle in degrees for the given dx and dy.
Args: Dy and Dx
Returns: Angle in degrees.

A3I Phase III Symbolic Modeller CSCI Page A-17

4.3 Environmental Modelling

4.3.1 Environmental Modelling Overview

ENTITLES

DYNAMIC

Llll _-_._;'sl Lll,,,,,,._ I Ill _";2_"t

INTHE OPERATOR-VEHICLE
ENVIRONMENT OBJECTS

The Simulation Environment

Figure 4.3 Environmental Objects

A3I Phase III Symbolic Modeller CSCI Page A-18

4.3.3 Terrain Modelling

4.3.3.1 Terrain Objects

Terrain modelling is currently performed on both the Symbolics machines and the Silicon Graphics
IRIS machines. Initial terrain data is obtained from DMA files by a program running on an IRIS
(See the VIEWS documentation) and supplied to the Symbolics as a data file used to initilize an
army. Modelling is currently being done on both machines to reduce communication requirements.

TERRAIN flavor

Defines flavor for TERRAIN objects
The following instance variables are used:

ground-los-angle >Lowest permissible line-of-sight angle.
The method for determining ground-los-sightt uses this value.
This value is currently static and is used to address the problem
associated with looking at points over the horizon. The
ground-los-sight method does correctly address downslope
situations.

los-increment >Line of sight increment. Specifies distance between intermediate
points which are checked when determining if line of sight
exists between two points.

dem >Digitial Elevation Model (DEM). Two dimensional array storing
elevation values as an integer for given x and y.

(ELEVATION TERRAIN) method
Purpose: Determine elevation at a given x and y.
Args: Integers values for x and y world coordinates.
Called by: Procedures in activities.
Returns: Integer representing elevation.

(ELEVATION-FROM-PIXELS TERRAIN) method
Purpose: Determine elevation at a given x and y.
Args" Integers values for x and y screen coordinates.
Called by: User interface procedures.
Returns: Integer representing elevation.

(LINE-OF-SIGHT? TERRAIN) method

Purpose: Determine if line-of-sight exists between two points
Args: X, Y and Z world coordinates for two points.
Called by: Procedures in activities
Returns: T or nil

A3I Phase III Symbolic Modeller CSCI Page A-19

(GROUND-LOS-CHECK TERRAIN) method
Purpose: Determine if the horizon prevents los.
Args: X, Y and Z world coordinates for two points.
Called by: (LINE-OF-SIGHT? TERRAIN)
Returns: T or nil

03LOCKING-TERRAIN? TERRAIN) method
Purpose: Determine if terrain blocks los.
Args" X, Y and Z world coordinates for two points.
Called by: (LINE-OF-SIGHT? TERRAIN)
Returns: T or nil

(PATH TERRAIN) method
Purpose:
Args:

Called by:
Returns:

Find intermediate points between two points.
X, Y and Z world coordinates for two points and
step size between intermediate points.
Procedures in activities

A list of intermediate points in the following
format:

((Xa Ya Za) (Xb Yb Zb) (Xn Yn Zn))

(NOE-PATH TERRAIN) method
Purpose: Find intermediate points between two points

in which the z values of the intermediate

points are elevation values determine by
the point's x and y.

Args: X, Y and Z world coordinates for two points and
step size between intermediate points.

Called by: Procedures in activities
Returns: A list of intermediate points in the following

format: ((Xa Ya Za) (Xb Yb Zb) (Xn Yn Zn))

A3I Phase III Symbolic Modeller CSCI Page A-20

4.3.3.2 Digital Elevation Model (DEM) Arrays

LOAD-MAP-ARRAY-2 function

Purpose: Loads terrain array with values from DMA data
Args: Two arrays:

I. The initial terrain array structure to be loaded
2. An array providing values from DMA data.

Called by: Top level function
Returns: N/A

Side-affects: Load terrain array with initial values.
Note: Function includes a declaration for a sys:array-register

to improve performance. Also, it is important to make sure
the input array represents data in a compatible array structure.
A typical error would be having an array which maps values
for Y with the origin of Y at the lower left to a structure which
represents the origin of Y at the upper left.

FILL2-MAP-ARRAY-2 method

Purpose:

Args:
Called by:
Returns:
Side-affects:
Note:

Interpolates elevation values from DMA supplied
values to provide resolution needed for contour smoothing.
A terrain array.
Top level function.
N/A

Fills values in terrain array.
A poor kludge that does not fill the last column correctly.

FILL-LAST-COLUMN-MAP-ARRAY-2 function

Purpose: Fix brain damage code in fill2-map-array-2 and fill2-map-array-2.
Args: A terrain array
Returns: N/A

Side-affects: Fills last column in terrain array.

FIND-HIGH-LOW function

Purpose:
Args:
Called by:
Returns:
Side-affects:

Find high and low values in a array
A 771 x 768 terrain array
Top level function
A list in the form (<high> <low>)
None

A3I Phase HI Symbolic Modeller CSCI Page A-21

4.3.4 Feature Modelling

Features of the environment, objects such as roads, are with the ENTITY flavor as an component.

PATH flavor

Def'mes flavor for PATH objects
The following instance variables are used:

turn-points >a list of points defining a route.
epsilon :>distance value in determining if

point has been reached.
The following instance variables are inherited from the ENTITY flavor.

name >name of most specialized flavor component.
entity-type >Static, dynamic or active.
location >this variable's structure is dependent on

how we integrate with the CDE models.

(NEXT-POINT? PATH) method
Purpose: Where do I go on the path from my current position? We assume

that the last-point is given, and is one of the turn-points.
Args: last-point
Called-by: Mission activity procedures.
Returns: A turn point list.
Side-effects: None

4.3.7 Other Environmental Objects

Objects in the environment include the wing helicopter, convoy vehicles, missiles and
similiar objects. Since Phase III investigated issues concerning actions inside the crew station, it
was not necessary to model environmental objects and the code for environmental objects has not
been modified in this phase. Significant changes will be necessary to adapt the code for future
simulations. Phase II code for environmental objects is located in the directory named
"B :>A3I>models>world.directory".

A3I Phase HI Symbolic Modeiler CSCI Page A-22

4.4 Equipment Modelling

4.4.1 Equipment Modelling Overview

The A3I system is designed for investigating human interaction with complex systems within the
context of specific mission objectives and environmental conditions.
With this prespective, it should be noted that the Equipment Modelling unit limits its scope to the
equipment currenly under investigation and other equipment necessary for a mission simulation
(i.e. other friendly helicopters, threat vehicles, etc.) are managed by the Environmental Modelling
unit.

By design, equipment unit objects are modelled in a manner which permits easy interface with
pilot/crew models which control state changes normally associated human interaction (i.e. turning a
switch off). The equipment unit objects require external operator models for human controlled
state changes. On the other hand, environmental unit objects may have an operator implicitly
represented as part of the equipment model itself. This was demonstrated in previous phases with
the convoy vehicles in which the vehicle objects had the ability to follow a route without explicitly
representing the operator. Since Equipment Modelling unit objects require significantly greater
computational resources, the ability for the designer to select varying levels of modelling effort
provides the designer with a means of controlling how system resources are allocated. The
decision of whether a specific system or component is modelled as an Equipment unit object or as
an Environmental unit object is not based on the attributes of the equipment but rather by the
objectives of the designer.

The usual method for modelling is to model one helicopter and all of its subsystems as Equipment
unit objects and other helicopters and systems as Environmental unit objects. An example of a
typical deviation from this pattern would be in a situation where the designer is concerned with the
interaction of the flight and communication systems. In this situation, the designer may decide to
model the helicopter's weapons systems as environmental objects if it is felt the systems are
necessary for the mission simulation but not actually a factor in the designer's concerns of the
interaction of the flight and communication systems.

Equipment items may be modelled as components or systems and, in some cases, represented
concurrently as both. The context in which information concerning an item is required should
determine if the information is represented in a component or system model. Components are
always considered as part of an equipment system. A distinguishing characteristic of components
is that from within the appropriate context a single functional/physical model provides sufficient
information concerning the functional/physical characteristics of the item.

Details of components and systems are given in the following sections.

A3I Phase III Symbolic Modeller CSCI Page A-23

_t .T2.T_tE_

FUNCTIONAL COMPONENTMOOELS

EQUIPMENT PHYSICAL
_ENTS _ENTS

-i
L..

|

, \

,1 I

SYSTEM i EQUIPMENTSYSTEM
ELEMENTS - ELEMENTS

FIXEDFEATURESOFTHEDESIGN
GIVENAS INPUTTOTHEDESIGNER

11

I
I

-L.

I
I

I
I

EQUIPMENT

SYSTEM

ELEMENTS

DESIGN FEATURES WHICH ARE

UNDER THE CO_ OF THE

DESIGIkER

A CREW STATION DESIGN

Figure 4.4 Equipment Modelling

A3I Phase III Symbolic Modeller CSCI Page A-24

4.4.2 Equipment Modelling Objectives

The objectives of the Equipment Modelling unit are directed at the needs of the designer in
investigating different design alternatives. In some cases, the designer may be concerned with the
functions provided by different systems and if these functions are sufficient for the given tasks. In
other cases, the designer may be more concerned with the interaction between the pilot and the
crew station when using a given system and focus more on the interface to a given function. In
order to view equipment from the desired perspective, the designer needs flexibility in specifying
either the functional or physical design attributes of a system. In order to provide this flexibility,
the Equipment Modelling unit has the following objectives:

1. The capability to specify functional design attributes independent of physical design.

2. The capability to specify physical design attributes independent of functional design.

3. Provide a mechanism for integrating functional and physical designs into a single
component.

4. Automatically determine the activities (physical interactions) necessary to achieve a
given function based on attributes from both the functional and physical models.

5. Provide a component structure in which the functional or physical model elements
may be conveniently varied.

4.4.3 Component Modelling

4.4.3.1 Component Modelling Overview

Components are represented in the Equipment Modelling unit by synthesis of functional and
physical models. The synthesis is achieved by making values of attributes in both models
dependent upon the other. The objects used to implement the models have been developed to
facilitate accessing physical information from the functional models and functional details from the
physical models in order to ensure flexibility for program development. Complete details are
provided in the following sections.

A3I Phase III Symbolic Modeiler CSCI Page A-25

4.4.3.2 Functional Components

4.4.3.2.1 Equipment Component Basic Flavor

EQUIPMENT-COMPONENT flavor

Defines flavor for EQUIPMENT-COMPONENT objects
The following local instance variables are used:

component-of- >instance which has this object
as a member of the list in the

components' slot.
component-name >symbol indicating flavor of object
component-type >user specified
component-functions >list of COMPONENT-FUNCTION instances
physical-component- >instance of a PHYSICAL-COMPONENT
input-states >specifies input-state descriptors
input-state-operators >used in creating component-functions
output-states >specifies output-state descriptors
activity-actions >user specified
func-model-args >holds values to be passed to a function
func-model-output >holds value resulting from above

function.
The following instance variables are inherited from entity:

location

geometric-prop
functional-objects
functional-instances
functional-flag
current time

cycle-flag

(MAKE-INSTANCE EQUIPMENT-COMPONENT :AFIER) method
Purpose: Finishes initialization requirements and updates

values in both the equipment and physical models.
Args: Ignored
Called by: (MAKE-INSTANCE EQUIPMENT-COMPONENT)
Returns: N/A
Side-affects: 1. Sets value of (equip-component physical-component)

to the equipment-component instance. It is
necessary to do this in the AFTER method since
an instance cannot be passed to another instance
which is instantiated in the original instance's
make-instance method.

2. Maps physical component state-operators to
physical component states.

3. Determines component functions operators.

A3I Phase III Symbolic Modeller CSCI Page A-26

(UPDATE-INPUT-STATE-OPERATORS EQUIPMENT-COMI_NENT) method

Purpose: Ma.ps physical component state-operators to

Args:
Called by:
Returns:
Side-affects:

eqmpment component states
None
(MAKE-INSTANCE EQUIPMENT-COMI_NENT :AFTER)
N/A
Sets values for input-state-operators.

(UPDATE-COMP-STATE-OPERS EQUIPMENT-COMt_NENT) method
Purpose: Maps functions to operators which achieved states

enabling those functions
Args: None
Called by: (MAKE-INSTANCE EQUIPMENT-COMPONENT :AFTER)
Returns: N/A

Side-affects: Adds operators to component-functions.

(EYAL-FUNC-MODEL-ARGS EQUIPMENT-COMPONENT) method
Purpose: Evaluates functional model input arguments
Args: None
Called by: (PASS-FUNC-MODEL-ARGS EQUIPMENT-COMPONENT)
Returns: Returns list of evaluated arguments
Side-affects: None

(PASS-FUNC-MODEL-ARGS EQUIPMENT-COMPONENT) method
Purpose:
Args:
Called by:
Returns:
Side-affects:

Pass arguments to physical model
None
Simulation models
N/A
Sets (func-model-args physical-component)
to world state sensitive arguments.

A3I Phase HI Symbolic Modeller CSCI Page A-27

4.4.3.2.2 Equipment Component Example

C
S
C

VOL CIPHER_) I_L__ 1_2
HOT MIC 4

ICS OFF PVT_'5
[]

_ TRANSMITTER

SELECTOR
SVlTCH

Figure 4.5 Transmitter Selector Switch

The Transmitter Selector Switch is located on the communcation control panel and is used to select
channels for intercommunication between the crew members and to select a radio transmitter for
external communication.

A3I Phase lII Symbolic Modeller CSCI Page A-28

C- 1041-trans-selector flavor

The following local instance variables are used:
selector-state >set during initialization and the simulation to the physical state value.
selected-transmitter--->set during initialization and the simulation.

The following instance variables are inherited from equipment-component
component-of- >should be set during instantation
component-name >set to 'C-1001-trans-selector in the default-init-plist
component-type >user specified
component-functions >detail discussion is presented in the following paragraphs.
physical-component >set to the following in the default-init-plist

(make-instance '7-position-discrete-rotation-control- 1)
:input-states '(selector-state)
:output-states '(selected-transmitter)

input-states >set to '(on/off-state volume-state) in the default-init-plist
input-state-operators >set during instantiation.
output-states >set to '(output-volume) in the default-init-plist
activity-actions >user specified
func-model-args >set to ((audio-signal pilots-VHF/FM) in the default-init-plist
func-model-output >set during a simulation

The following IVs are inherited from entity through equipment-component:
name >set to 'C-1001-trans-selector in the default-init-plist
entity-type >set to 'functional in the default-init-plist
location >N/A - this depends on the CDE.

The flavor has EQUIPMENT-COMPONENT as a flavor component.

The instance variable "component-functions" for the C- 1001-trans-selector object is bound to a list of
component-function objects. During flavor definition, the values for the ":function-pattern" and ":state-
value" variable of the component-function instances are defined with the default-init-plist. As the C-
1041-trans-selector object is instantiated, the values for the ":state-operator" variables are updated by the
interaction of the make-instance "after" methods of both the C-1041-trans-selector object and the physical
component object.

When the "after" methods are completed the "component-functions" variable is bound as follows:

component-functions =>

' (<component-function-instance- 1
:function-pattern '(connect (audio-signal microphone) (audio-input ICS))
:state-value '(= selector-state 1))

:state-operator

<component-function-instance-2
:function-pattern '(connect (audio-signal microphone) (audio-input ICS))
:state-value '(= selector-state 2))

:state-operator

A3I Phase III Symbolic Modeller CSCI Page A-29

<component-function-instance-3
:function-pattern '(connect (audio-signal microphone) (audio-input pilots-ARC-186))

:state-value '(= selector-state 3))
:state-operator

<component-function-instance-4
:function-pattern '(connect (audio-signal microphone) (audio-input UHF-receiver))
:state-value '(= selector-state 4))
:state-operator

<component-function-instance-5
:function-pattern '(connect (audio-signal microphone) (audio-input CPG-186))

:state-value '(= selector-state 5))
:state-operator

<component-function-instance-6
:function-pattern '(enables 'pilot's-remote-switch)
:state-value '(= selector-state 7))
:state-operator

4.4.3.3 Physical Components

4.4.3.3.1 Physical Component Basic Flavor

PHYSICAL-COMPONENT flavor

Defines flavor for PHYSICAL-COMPONENT objects

The following instance variables are used:
equip-component--->instance of EQUIPMENT-COMPONENT
input-states >specifies input-state descriptors
state-operators--->actions which change state values
side-effects >currently undeveloped but needed
func-model >function for a functional model
func-model-args--->arguments for the functional model
installed-as >user specified
installed-on >user specified

The following instance variables are inherited from entity:
location

geometric-prop
functional-objects
functional-instances
functional-flag
current time

cycle-flag

A3I Phase Ill Symbolic Modeller CSCI Page A-30

(RUN-FUNC-MODEL PHYSICAL-COMPONENT) method

Purpose:
Args:

Called by:
Returns:
Side-affects:

Runs functional model

Passed internally previously.
See (PASS-FUNC-MODEL-ARGS EQUIPMENT-COMt_NENT)
Simulation models
N/A
Sets func-model-output to the output of the functional model.

4.4.3.3.2 Physical Component Example

DISCRETE-ROTATION-CONTROL flavor

Defines flavor for DISCRETE-ROTATION-CONTROL objects

The following local instance variables are used:
control-handle >a symbol specifying control handle type
rotation-state >the current state
rotation-states >number of states available

rotation-detent-style >a symbol characterizing physical style
rotation-travel >specifies in degrees maximum amount of

rotation possible
rotation-travel-breakout >number of degrees movement to reach

the next state
rotation-static-friction >resistance to initial movement
rotation-coulomb-friction--->resistance to continued movment

It not related to either velocity
or displacement

increase-direction >provides mapping for rotation direction
to level values

rotation-markings >provides marking-to-state mappings

The followin.g instance variables are inherited from physical-component:
equip-component
input-states >set in this flavor using the default

init plist to '(rotation-states)
state-operators
state-change-side-effects
func-model >set in this flavor using the default

init plist to:
'(lambda (instance rotation-state)

rotation-state)
func-model-args
installed-as
installed-on

The following instance variables are inherited from entity:

A3I Phase III Symbolic Modeiler CSCI Page A-31

location

geometric-prop
functional-objects
functional-instances
functional-flag
current time

cycle-flag

4.4.3.4 Component-Functions

4.4.3.4.1 Component Functions Overview

Component functions are structures that provide an explicit link between the design of equipment
and specific pilot subtasks. Component function values are dependent upon functional and
physical design models and provide a flexible means of investigating different design alternatives.
After a design has been chosen, it is necessary to create activities which map to component
functions. This is currently done by hand in ZMACS but the structures have been developed with
the intention of having the activities created automatically. These activities represent primative
actions which a pilot may perform and this process is essentially the "bottom-up" approach to task
analysis. These activities need to be linked as subgoals for achieving higher level goal activities
which are created in a "top-down" approach.

A3I Phase HI Symbolic Modeller CSCI Page A-32

Mission [

Mission Subgoal
Activity Mission Subgoal

Activity

Primative Activity
Objects are Linked to Mission

Goal Activities by Matching
Functions to Goals

Activity Subtask Activity Subtask Activity Subtask

Compone_ Functions
are mapped into

Primative
Activity Objects

I _ IntegrationFunctional Model of
Functional and

_ __._. Physical Models

I Physical Model _ Creates| Component Function

Figure 4.6 Component Functions

I
!

Component
Functions

A3I PhaseIII SymbolicModeller CSCI Page A-33

4.4.3.4.2 Component-Function Flavor

COMPONENT-FUNCTION flavor

Defines flavor for COMPONENT-FUNCTION basic objects
The following instance variables are used:

function-pattern >specifies a function
state-value >specifies a state which achieves the function
state-operators >specifies operators which achieve the above state

The flavor is a base flavor and does not have any specialized flavor components

Component-functions objects are initially defined within the definition of the associated
functional object. The instance variables "function-pattern" and "state-value" should be
bound in the initial definition. The value for instance variable "state-operators" is set

during instantiation,and its value is dependent on both the functional object and a physical
object to which the 'physical-component" instance variable of the functional model is
bound.

Components-functions objects are currently mapped directly into primative activities using
the ZMACS editor. Future developments should provide methods for generating activity object
templates automatically based on value provided in the component- functions instances. It is not clear,
however, at this time the range of attributes which will need to be specified for the activity in a
process which generates activity instances from component functions.

4.4.3.4.3 Component Function Example

A3I PhaseIII SymbolicModeller CSCI PageA-34

Example of a Component Function for a Transmitter Selector Switch

In the example, the Transmitter Selector Switch object has six functions as indicated in the
component-function instance variable:

COMPONENT-FUNCTIONS: (#<Component-Function 54124226>

#<Component-Function 54124232>
#<Component-Function 54124236>

#<Component-Function 54124242>

#<Component-Function 54124246>

#<Component-Function 54124252>)

#<Component-Function 54124236>, an object of flavor COMPONENT-FUNCTION

has instance variables:

m FUNCTION-PAq"rERN:

STATE-VALUE:

. STATE-OPERATORS:

(CONNECT (AUDIO-SIGNAL MICROPHONE)
(AUDIO-INPUT PILOTS-ARC- 186)

(-- SELECTOR-STATE 3)

(DISCRETE-ROTATE-TO
#<C-1041-TRANS-SELECTOR 54124176> 3)

The FUNCTION-PATI'ERN instance variable was set by the value supplied in
default-init-plist of the Transmitter Selector Switch flavor.

The STATE-VALUE instance variable was set by the value supplied in
v default-init-plist of the Transmitter Selector Switch flavor.

v

The STATE-OPERATORS instance variable was set by the values computed in
MAKE-INSTANCE "AFTER" method inherited by Transmitter Selector Switch
flavor from the Equipment-Component flavor. This method integrates values from
both the functional and physical objects to map a physical activity to a specific
function.

A3I Phase III Symbolic Modeller CSCI Page A-35

4.4.5 Equipment Systems

4.4.5.1 Equipment Systems Overview

EQUIPMENT-SYSTEM flavor

Defines flavor for EQUIPMENT-SYSTEM objects
The following instance variables are used:

components >flavor names of equipment components
which may be subsystems defined with
the EQUIPMENT-SYSTEM flavor.

related-equipment--->user specified
task-analysis-code-->user specified
subsystems >component subsystems defined with the

EQUIPMENT-SYSTEM flavor.
operators-manual >user specified
reference-manuals--->user manuals

The flavor is a base flavor and does not have any specialized flavor components

(FUNCTIONS-PROVIDED EQUIPMENT-SYSTEM) method
Purpose: Describes capibility of system.
Args: None
Called by: As needed
Returns: A list of functions provided by the system in the

following format:
((<component-name-1 > (<component-function-a>

<component-function-b>

<component-function-n>))
(<component-name-n> (<component-function-a>

<component-function-b>

<component-function- n>)

A3I Phase HI Symbolic Modeller CSCI Page A-36

4.4.5.3 Equipment System Example

SELECTOR SELECTOR
SWITCHES SWITCH

Figure 4.7 Communcations Control Panel C-1041/ARC

Cgmmunications Cgntr01 Panel, C-1041/AR(_

C-1041 flavor

Defines flavor for C-1041 objects

The following local instance variables are bound as follows:
C- 1041 -volume-con trol >
C-1041-rec-selector-1 >
C- 1041-rec-selector-2 >
C- 1041-rec-selector-3 >
C- 104 1-rec-selector-4 >
C- 1041-rec-selector-5 >
C- 104 l-rec-selector-AUX -->
C- 1041-rec-selector-NAV -->
C- 104 1-hot-mike-switch >

m stance of C- 1041-volume-control
instance of C- 104 1-rec-selector- 1
instance of C- 1041-rec-selector-2
instance of C- 104 1-rec-selector-3
instance of C- 104 l-rec-selector-4
instance of C- 1041-rec-selector-5
mstance of C- 104 l-rec-selector-AUX
mstance of C- 1041-rec-selector-NAV
instance of C- 1041-hot-mike-switch

C- 1041-trans-selector > instance of C- 1041 -trans-selector

The following instance variables are inherited from functional-entity:

A3I Phase III Symbolic Modeller CSCI Page A.37

geometric-prop >dependent on the CDE models.
functional-objects >set to a list of the following:

C- 1041-volume-control
C- 104 1-rec-selector- 1

C- 1041-rec-selector-2
C- 104 1-rec-selector-3
C- 104 1-rec-selector-5
C- 104 1-rec-selector-AUX
(2-104 1-rec-selector-NAV
C- 1041-hot-mike-switch
C- 104 1-trans-selector

functional-instances -->list of instances of functional-objects
functional-flag >set to T

The following instance variables are inherited from DYNAMIC-ENTITY
through FUNCTIONAL-ENITITY

current time >simulation time.

cycle-flag >not currently used.

The following WS are inherited from BASIC-ENTITY through
DYNAMIC-ENTITY.

name >name of most specialized flavor component.
entity-type >Set to 'functional in the default-init-plist.
location >this variable's structure is dependent on

how we integrate with the CDE models.

The following instance variables are inherited from equipment-system:
components >a list of the following:

C- 1041-volume-control
C- 104 1-rec-selector- 1
C- 104 1-rec-selector-2
C- 104 1-rec-selector-3

C- 104 1-rec-selector-4
C- 104 1-rec-selector-5

C- 1041-rec-selector-AUX
C- 1041-rec-selector-NAV

C- 104 l-hot-mike- switch
C- 104 1-trans-selector

C-1041-MIC-switch
C- 104 1-CIPHER-indicator

C- 1041 -con trol-head-plate
C- 104 1-hot-mike-switch-guard

C- 1041-mounting-screws
C-1041-1abels

functions-provided--->a list of functional-instances functions
the following format:

((<component- 1> (<function- 1>
<function-2>

<function-n>)

(<componen t-n> (<function- 1>

A3I PhaseIII SymbolicModeller CSCI PageA-38

<function-2>

<function-n>)))
related-equipment >a list of the following:

ICS pilots-ARC- 186
UHF-receiver CPG-ARC- 186

IFF-transponder
ADF
RADIO/ICS-rocker- switch
remote-trans-selector-switch
tmnsmiuer-lights-panel
headset microphone

task-analysis-code--->user specified as desired.
subsystems >'none
operators-manual >'TM 55-1520-238-10
reference-manuals--->'TM 55-1520-238-10

This flavor has the following flavor components:
functional-entity
equipment-system

4.4.5.2 Helicopter Modelling

4.4.5.2.1 Helicopter Modelling Overview

In order to model the basic characteristics of rotary wing flight in an unmanned simulation,
it is necessary to model guidance logic and simple aerodynamic properties. Guidance logic and
aerodynamics for rotary wing flight are complex topics and the requirements for models are
dependent upon the tasks and the desired level of fidelity.

In Phase 1, guidance logic was represented as pilot activities in lisp code and the helicopter was
represented as an lisp flavor object with the associated aerodynamics represented as lisp methods.
Since the Phase 1 models were point-mass based which did not provide bank and pitch information
necessary for the graphical models, Phase II provided models for aerodynamics and associated
guidance in Fortran code. The aerodynamics model was linked to a lisp flavor object representing
the helicopter by means of a communication program which passed information once during each
tick interval. The pilot activities were linked to the guidance model by a methodology which
assumed the aircraft was controlled by determining what control movements would be necessary to
achieve a set of points specified as given values for X, Y, Z coordinates, heading, and airspeed.
In this methodology, the pilot activities linked to the guidance model by passing a set of waypoints
defined in terms of longitude, latitude, altitude, heading and airspeed The guidance model
is used to control the aircraft by providing the necessary control inputs to the aerodynamic model to
achieve these waypoints. To model contour flight such as depicted in Figure 4.1, a route of flight
would be defined and passed to the guidance routine as a set of waypoints representing points A
through D. The guidance routine would determine the control movements necessary to fly through
these points and pass them to the aerodynamic model which would update the helicopter state
variables as the simulation progressed. In Phase III, the guidance and aerodynamic model code
was moved from the Symbolics to the IRIS. The procedures for passing values from the Symbolic
Modelling CSCI to the modules on the IRIS have not yet been resolved.

A3I Phase IIl Symbolic Modeller CSCI Page A-39

The current requirement to pass all values to the guidance routines makes some modelling difficult
or impossible. For example, if Figure 4.1 represented a NOE flight in which the climb necessary
reach point B was achieved with a cyclic climb, it would be difficult to determine the airspeed input
value for waypoint B since it is typically not a concern of the pilot as long as the airspeed remains
within a reasonable range. Similiar problems arise in determining values for X and Y when trying
to model situations in which the primarily objectives are in maintaining an airspeed and bank angle
as opposed to flying over specific ground.

4.4.5.2.2 Guidance and Aerodynamic Requirements

Current requirements for the guidance module include determining cyclic, collective and pedal or
sidearm control inputs to the aerodynamic model based on a set of goals represented as points
defining locations and state descriptions provided in the format:

Set of points => ((<x-l> <y-l> <z-l> <heading-l> <airspeed-l>)
(<x-2> <y-2> <z-2> <heading-2> <airspeed-2>)

(<x-n> <y-n> <z-n> <heading-n> <airspeed-n>))

In addition to supplying control inputs to the aerodynamic model, the guidance module should
provide information concerning the control inputs to the related symbolic activity.

Future requirements should include the ability to define goals as sets in which one or two of the
attributes are derived based on the aerodynamic model. For example, a cyclic climb could be
represented as a goal in which airspeed for one of the points is not given but derived based on
restricting the collective movement and letting the airspeed be determined based on the result of
pitch change necessary for the aircraft to achieve the indicated goal for x (altitude).

The aerodynamic model must be capable of modelling:
1. Pitch as a function of longitudinal cyclic or longitudinal-tilt sidearm control
2. Bank as a function of lateral cyclic or lateral-tilt sidearm control
3. Heading/Yaw as a function of pedal or sidearm rotational control
4. Power as a function of collective or vertical sidearm control

5. Course as a function of pitch, bank and yaw
6. Airspeed as a function of power and pitch
7. Altitude as a function of power and pitch

The aerodynamic model must also provide the symbolic models with state variable values for the
above attributes.

A3I Phase III Symbolic Modeller CSCI Page A-40

4.5 Mission Modelling

4.5.1 Mission Overview

The mission description resides in the "mission" object of the LISP implemention. The mission
provides the general description of the tasks which must be performed or states which should be
achieved. This is the structure in which information normally provided by an operations order
should be represented. This should not be confused with top-level mission activities since this
structure should represent the actual mission and a top-level mission activity should represent the
activity of trying to perform a mission. This object is referenced by the pilot model by the
assignment of this object as the value of the mission variable of the pilot object. Information
concerning the mission is accessed by message passing.

For example, a pilot may determine his current route by the following message:

(send (send self :mission) :current-route)

The indirect addressing of the above code provides flexibility since to change the pilot's mission
the designer need only to change the value of the mission variable on the pilot's model object to a
new mission object:

(send self :set-mission <new-mission-object>)

Similiarily, value for the mission may be changed directly without the need to access multiple
objects or structures. The simulation may develop in a way that the pilot is required to change his
current route. This would be accomplished by the action of one of the pilot's activities sending the
message:

(send mission :set-current-route <new-route>)

The separation of the mission object from the task representation is important in that it is the
primarily relationship which provides realistic task generation using a general task descriptions
which are responsive to different situations.

4.5.2 The Mission Flavor

The mission defines the objectives for a pilot in terms of tasks which must be completed or states
to be achieved and it should supply information necessary to achieve the objectives.

It is important to distinguish the mission from the top-level activity which represents an attempt to
accomplish a mission. The mission flavors used in previous phases were hardcoded and not
flexible for mission changes. Definitions of base mission flavors from which specific missions
should be defined are not yet developed but are necessary for flexibility in defining different
missions. The file "B:>p3>sym>mission>p2-mission.lisp contains information given to the

A3I Phase III Symbolic Modeller CSCI Page A-41

helicopter pilots in the Phase II A3I scenario by their mission and associated doctrine. It was not
used in Phase M and is presented only as background.

AMBUSH-MISSION flavor

Defines flavor for AMBUSH-MISSION objects
The following instance variables are used:

name >"Ambush Mission"

approach >path of approach to observation area
observation-positions >where to observe from
landmark >position of landmark
fired? >have I fired yet?
coordinated-f'wing? >have we coordinated firing?
t'wing-positions >planned f'wing positions
default-pop-up-eievation-->don't pop up higher than this
weapon-type >what kind of weapon to use
missile-type >what kind of missile to use
hover-mode >manual or auto-hover preferred?
target >what is my target?
target-order- >decreasing order of target importance
lead >lead helicopter in mission
wing >wing helicopter in mission

(:POP-APPROACH AMBUSH-MISSION) method
Purpose: Remove an approach point that has been reached.
Args: None
Called-by: Mission activities procedures
Returns N/A
Side-effects: Sets approach instance variable to the cdr of itself.

(:NEXT-APPROACH-POINT AMBUSH-MISSION) method
Purpose: What is the next approach point to reach?
Args: None
Called-by: Mission activity procedures.
Returns: N/A

(:WEAPON-TYPE? AMBUSH-MISSION) method
Purpose: What type of weapon should be used for this mission?
Args: asker
Called-by: Mission activity procedures.
Returns: 'Missile, machine-gun or nil.

(:MISSILE-TYPE? AMBUSH-MISSION) method
Purpose: What type of missile should be used for this mission?
Args: objective asker
Called-by: Mission activity procedures.
Returns: 'Tow, hellfire or nil.

A3I Phase III Symbolic ModeUer CSCI Page A-42

(:HOVER-MODE? AMBUSH-MISSION) method
Purpose: What kind of hover should I use?
Args: None
Called-by: Mission activity procedures.
Returns: 'auto-hover

(:EXPOSURE-LIMIT AMBUSH-MISSION) method
Purpose: How long (maximum) should I stay exposed after my first firing?
Args: None
Called-by: Mission activity procedures.
Returns: 30 ;Note this value is hardcoded and insensitive to the situation.

(:PAST-EXPOSURE-LIMIT? AMBUSH-MISSION) method
Purpose: Have I been exposed too long since firing?
Args: None
Called-by: Mission actavity procedures.
Returns: t or nil

(:TARGET-VALUE AMBUSH-MISSION) method
Purpose: Space invaders approach to ordering targets
Args: object
Called-by: Mission activity procedures.
Returns: Numerical value depending on target type.

(:LAST-TARGET AMBUSH-MISSION) method
Purpose: Given a list of legal targets, what is the last one in line?
Args: targets
Called-by: Mission acttvity procedures.
Returns: a target instance.

(:ALL-TARGETS? AMBUSH-MISSION) method
Purpose: What are all the targets of the mission?
Args: None
Called-by: Mission activity procedures.
Returns: A list of targets (list of convoy vehicles).

(:ROTATE-FIRING-POSITIONS AMBUSH-MISSION) method
Purpose: Put the first fining position at the end of the list
Args: None
Called-by: Mission acuvity procedures.
Returns: A rotated firing position list
Side-effects: Sets the first position in the firing position to the end.

A3I Phase III Symbolic Modeller CSCI Page A-43

(:SCAN-OBJECT-NUMBER? AMBUSH-MISSION) method
Purpose: How many targets do I need to see before I stop scanning?
Args: None
Called-by: Mission activity procedures.
Returns: 4 ;hardcoded and not sensitive to the situation

(:MISSION-CHOICES AMBUSH-MISSION) method
Purpose Normally, this would return mission doctrine activities, given the

current situation. None have been added yet for the a3i demo.
Args: None
Called-by: Mission activity procedures.
Returns: A list ;hardcoded as (list "JINK-AND-HIDE")

(:SCRIPT-ACTIVITIES AMBUSH-MISSION) method
Purpose: Normally, this would return activities mandated by script doctrine,

but none have been added yet for the a3i demo.
Args: None
Called-by: Mission activity procedures.
Returns: A list ;hardcodeds as (list "RETURN-TO-BASE")

(:JINK-APPROACH AMBUSH-MISSION) method
Purpose: Which way should I go perpendicular to the missile coming at me?

(I need to go distance in the jink, perpendicular to the missile, in
a direction with a line of sight at my elevation. Assumption is that
at least one of the bearings will work.)

Args: agent missile distance
Called-by: Mission activity procedures.
Returns: (x y)

LEAD-MISSION flavor

Defines flavor for lead missions.
The following instance variable are defined.

name >name of mission, such as, "Lead Mission"

agent >who is assigned this mission
current-route >route currently being taken
initial-position >starting position in x, y and z.
route-to-op >list of point defining route to observation point
route-to-hp >list of point defining route to
route-to-fpl >list of point defining route to firing point 1.
route-to-fp2 >list of point defining route to timing point 2
route-for-egress--->list of point defining route to return to base.
target >current target
target-order- >list of target sorted by target value which is

currently fixed.

A3I Phase III Symbolic Modeller CSCI Page A-44

The following variables are inherited from 'ambush-mission
name >"Ambush Mission"

approach >path of approach to observation area
observation-positions >where to observe from
landmark >position of landmark
fired? >have I fired yet?
coordinated-f'tring? >have we coordinated firing?
firing-positions- >planned f'wing positions
default-pop-up-elevation-->don't pop up higher than this
weapon-type >what kind of weapon to use
hover-mode >manual or auto-hover preferred?
target- >what is my target?
target-order >decreasing order of target importance
lead >lead helicopter in mission
wing >wing helicopter in mission

The flavor uses 'Ambush-mission as a flavor component.

(:HOLDING-POINTS LEAD-MISSION) method
Purpose: list (car (last route-to-hp))
Args: None
Called-by: Mission activity procedures.

• Returns: N/A

(:OBSERVATION-POINTS LEAD-MISSION) method
Purpose: Indicate place from which to observe area.
Args: None
Called-by: Mission activity procedures.
Returns: Last position in route-to-op

(:FIRING-POINTS LEAD-MISSION) method
Purpose: Indicate firing positions
Args: None
Called-by: Mission activity procedures.
Returns: Last positions defined in route-to-fp 1 and route-to-fp2

(:RELEASE-POINT LEAD-MISSION) method
Purpose: Indicate release point
Args: None
Called-by: Mission activity procedures.
Returns: Last position in route-for-egress

(:PLANNED-ROUTE
Purpose:
Args:
Called-by:
Returns:

LEAD-MISSION) method
Indicates planned route of flight
None

Mission activity procedures.
A list including the initial position and all positions
defined in route-to-op, route-to-fpl, route-to-fp2 and
route-for-egress.

(:TARGET-ORDER? LEAD-MISSION) method
Purpose: Sorts target according to their value.
Args: targets

A3I PhaSe III Symbolic Modeller CSCI Page A-45

Called-by:
Returns:

Mission activity procedures.
A sorted target list

4.6 Pilot Modelling

4.6.1 Pilot Modelling Overview

There is structural correspondence between the crew's temporal division of goal-directed activities
and the software activity spawning mechanism. For example, experienced aircrews tend to break a
mission into phases of related activities. At a fairly high level of abstraction these are:

1. Enroute

2. Target Service
3. Egress.

Associated with these phases are particular types of tasks and doctrinal rules of operation. In
decomposing the mission for simulation, tasks maybe classified as belonging to one or another of
these phases. In software from the primary activity of "ambush mission activity" spawns three
children, "enroute", "target-service", "egress". These are constrained to be .performed sequentially
in nominal mission operation. This means, for instance, that the tasks associated wath preparation
must be satisfactorily completed before the next phase of tasks can be generated, or spawned. The
software architecture thereby simulates the aircrew's cognitive decomposition of the mission into
discrete phases.

ATFRIBUTES

(EYESIGHT
SKILL LEVEL

ETC)

DYNAMIC

L
ACTIVE-OBJECTS

/
,/

BEHAVIOR

(ACTIVITIES)

PILOT MODEL

Figure 4.9 Pilot Model

A3I Phase III Symbolic Modeller CSCI Page A-46

4.6.2 Pilot Definition

4.6.2.1 The Pilot Basic Flavor

PILOT flavor

Defines flavor for pilot objects

The following instance variables are used:
helicopter- >instance of an helicopter
mission >instance of an assigned mission

The following instance variables are inherited from ACTIVE-ENTITY
activities >List of activities.
activity-history >List of activities.

The following are inherited from DYNAMIC-ENTITY
current time >simulation time.
cycle-flag >not currently used.

The following are inherited from BASIC-ENTITY through
DYNAMIC-ENTITY.

name >name of most specialized flavor component.
entity-t >Set to 'active in the default-init-plist.
location >This variable's structure is dependent on

how we integrate with the CDE models.

This flavor uses ACTIVE-ENTITY as a flavor component

4.6.3 Activity Representation

4.6.3.1 Activity Flavors

4.6.3.1.1 Test-Activity Flavor

TEST-ACTIVITY flavor

The following instance variables are used:

name >name of the activity's flavor.
tag >user specified.
agent >who is carrying me out.
parent >instance generating activity.
children >instances generated by this activity.

A3I Phase III Symbolic Modeller CSCI Page A-47

activity-type >activity flavor type.
initialization-procedures-->to be completed when activity instantiated.
time-init >user specified.
current-time >simulation time.
subactivities >activities to be created.
preconditions >precondition for starting activity.
estimated-start-time >for planning.
estimated-duration >for planning.
time-started >when started as action.
start-procedures >to be completed when activity actually starts.
tick-procedure >form to execute in response to a tick message.
time-ended >time terminated. Nil = not terminated.
termination-conditions >when to end.
termination-procedures >what to do when I end.
vacp-data >hard-coded VACP value. See section 4.6.3.5.
variable-vacp-load-p >If nil, used hard-coded VACP value.

If t, use result of evaluating vacp-load-form.
vacp-load-form >form which procudes context sensitive VACP values.
vacp-data-history >argument use with vacp-load-form recorded for

debugging and analysis after the simulation.
related-activities >user specified.
assertions >known facts - user specified.
constraints >user specified
heuristics >user-specified

The flavor SI:PROPERTY-LIST-MIXIN is used as a flavor component.

(:INIT TEST-ACTIVITY :AFTER) method

Purpose:
Args:
Called-by:
Returns:
Side-affects:

Enables before and after methods

Ignored
Procedures creating activities
T
Used to enable before and after methods only.

(MAKE-INSTANCE TEST-ACTIVITY :AFTER) method
Purpose: Creates children of an activity
Args: Ignored
Called by: Procedures for creating activities
Returns: N/A
Side-affects: Creates instances of activities listed in the subactivity

instance variable and sets the children instance variable
to a list of these instances. It also adds the activity to the
global list name *test-activities* and names 'LEAD as the
the agent. The naming of 'LEAD as agent should be changed
to context sensitive code if the activity is for an environmental
object.

(START TEST-ACTIVITY) method

A3I Phase III Symbolic Modeller CSCI Page A-48

Purpose:
Args:
Called-by:
Returns:
Side-effects:

Starts an activity
time

Procedures for starting activities
N/A
Sets times and evaluates start procedures.

(TICK TEST-ACTIVITY) method
Purpose: Performs tick procedure if termination test falls.
Args: None
Called-by: Procedures in the activity's parent or, if top level, by the

simulation executive.
Returns: N/A

Side-effects: 1. Updates current-time
2. Tests termination conditions
3. Terminates activity if terminations tests are true.
4. Executes tick-procedure otherwise.

(TERMINATE TEST-ACTIVITY) method
Purpose:
Args:
Called-by:
Returns:
Side-effects:

Does the bookkeeping for completion of an activity.
None

Termination messages specified by the user or activity code.
N/A
Sets values for time and VACPs and executes termination
procedures.

(TERMINATE? TEST-ACTIVITY) method
Purpose: Test for termination conditions within the context of the instance.
Args: None
Returns: None
Side-effects: Test termination conditions.

4.6.3.1.2 Phase I and II Activity Flavors

Activity representation in previous phases were based on a methodology which assumed
essentially a fixed scenario with simple contingencies. The methodology provided means of
specifying a wide range of temporal relations between activities by providing the following activity
flavors:

Sequential
Parallel

Parallel-stop
Rotation
Fixed-duration
Intermittent
Choice
Manual-choice

The temporal characteristics of an activity's subtasks were determined at compile time by providing
them as flavor components. This enabled specific behavior by providing methods through
inheritence but did not provide sensitivity to situations in which they would be performed since it
was accomplished at run-time. Also, inherent in this methodology was the assumption that if goals

A3I Phase III Symbolic Modeller CSCI Page A-49

were temporally constrained then all the subtasks would inherit the temporal constraint. This
assumption was shown to be in error in the communications example presented in Phase III in
which it was incorrect to conslrain the activity for reaching a switch for the second task until all
subtasks for the fin'st subtask were completed. It will be necessary to make major modifications to
the activity mechanism to provide correct temporal constraints.

The activity flavors for Phases I and II provided significant capabilities for defining mission
scenarios and, although the mechanism needs to be revised, the general functionality provided is
still necessary. For this reason, a brief description of the activity flavors is provided. For more
details concerning the actual mechanisms used, the documention and source code for both Phases I
and II should be used.

4.6.3.1.3 Sequential Activities

Sequential activities, when created, first executes its initialization procedures and then spawns a
child from their first activity form. On termination of the activity spawned, they spawn a child from
the next form, and so on, until all children have been spawned and terminated. The sequential
activity then executes the termination procedures and terminates. Procedures included in the
children spawned may be used to alter the sequence as a means of handling exceptions. For
example, a sequential activity may include four activities as sequential forms and the fast activity
may have as its termination procedures a condition, which if proven true, will send a message to
the parent activity to terminate and prevent the remaining three activities from being spawned.

4.6.3.1.4 Parallel and Parallel-stop Activities

Parallel and parallel-stop activities behave in a manner similiar to sequential activities with a few
exceptions. Parallel activities spawn all activity forms after initialization and the parallel activity
continues until all the children have terminated. Parallel activities spawn all activity forms after
initialization and the parallel activity continues until any of the children have terminated. To
achieve state dependent behavior of terminating, a parallel activity may be used with the
termination procedures of the children spawned having procedures which may terminate either
another child or the parent activity.

4.6.3.1.5 Rotation Activities

Rotation activities spawn children from their activity form list in rotation until terminated. The test
for termination may be present in the rotation activity, the activities spawned, or a combination of
both.

4.6.3.1.6 Fixed Duration Activities

Fixed duration activities carry out their tick procedure for a fixed number of ticks, then terminate.
The lowest level of activities are often fixed duration activities. The duration for fixed duration

activities are specified in fixed duration lists. Representation of different level of training and
experience may be represented by different fixed duration lists.

4.6.3.1.7 Intermittent Activities

Intermittent activities intermittently carry out a procedure. This is useful when trying to represent a
cyclic activity for which the duration of execution and interval between activity is known.

A3I Phase HI Symbolic Modeller CSCI Page A-50

4.6.3.1.8 Choice and Manual Choice Activities

Choice activities chooses one from a list of options spawned for the activity forms, then spawn that
option after the time taken to choose it has elapsed.

An option for choice capability was added in Phase II that allows direct interaction with the
designer. This enables the system to deal with decisions when the models involved do not yet
possess sufficient capability to make a rational choice. This is accomplished by providing a choice
menu to the designer which presents a description of the decision which must be made, details of
factors which should be considered when making the decision, the choices available, and specific
information relevant to each choice.

4.6.3.2 Complex Activities

Other types of activities may be created by blending activity types together or by procedures
completed during activity initialization. Choice activities, for example, have the fixed duration
activity flavor as a component. When they have decided which child to spawn, they set their
duration to the amount of time spent choosing. On terminating, they add the child selected to their
agent's activity list.

Another capability implemented in Phase II was the dynamic specification of activity forms to be
spawned. In Phase I, activities to be spawned were specified prior to starting a simulation. As a
simulation was run, arguments concerning the current world state were passed to these forms by
the initialization procedures providing a means a making these predefined forms responsive to
world state. In Phase II, the initialization procedures included functions which, when evaluated
during a simulation, determined what activity forms would be spawned in addition to passing
arguments concerning world state. This involved no changes to the basic structure of activities in
Phase I, but simply involved providing a user defined function in the initialization procedures.

These activity types support some of the functionality one would desire in a simulation and
planning environment. There are a tremendous number of obvious extensions. One strength of the
obiect-oriented methodology is that it allows such extensions to be made without changing the
existing system.

4.6.3.3 Activity Interactions with JACK

It is possible for activities to interact with the JACK CSCI by having the tick procedures of the
activities pass commands to JACK. This is accomplished by having the activity determine which
command, such as a "reach-for" command, it wants JACK to execute and having the
Communications CSCI write this command to a file which the JACK program has been initialized
to monitor. JACK would read the command, execute the action, and signal the activity when it has
finished through the Communications CSCI. Since JACK has no concept of time, it is difficult to
coordinate interaction of activities related to issues addressed by JACK.

4.6.3.4 Activity Interactions with Aero Modelling

At this time activity interactions with the Aero Modelling is limited to the interactions provided by
the Guidance CSCI. Currently, these interactions are passive in that the activities can not vary the
route of flight after the initial waypoints have been passed and the only interaction possible at run
time is the ability to read state values of the aero model.

A3I Phase III Symbolic Modeller CSCI Page A-51

4.6.3.5 VACP Modeling

The operator performance model distinguishes among visual, auditory, cognitive, and psycho-
motor resource loadings within a particular task. These loadings are expressed as subjective
estimates of the workload imposed by activities as they are performed. The estimates have been
supplied by expert pilots as they "walked" through the activities associated with a particular
mission. The estimates are given on an integer scale from 1-7. The model assumes independent
loading on each performance resource. The model further postulates an additive relationship along
each of the resource dimensions.

In Phase I, the value for the specific VACP loads were determined by an activity table lookup,
with different levels of loading provided to pilots of various experience and skill level by different
tables. In Phase II, the capability to dynamically compute a load was demonstrated by having the
value computed using world state details as factors. For example, in Phase II the "monitor radios"
activity for adjusted its auditory load depending upon the amount of radio traffic which was
determined by a random number function. This was implemented by providing all activities with a
"variable-VACP-P" flag and "variable-VACP-form" values. The VACP load for an activity is
determined by checking the value of the "variable-VACP-P" flag. If the value is nil, the value for
the load is determined by the lookup table in the same manner as Phase I, otherwise the load is the
result of evaluating the function provided as the "variable-VACP-form" in the lexical environment
the activity was performed. This provides a simple framework for incorporating model computed
loads as those models become available.

One important thing to note is that the VACP computation can be incrementally improved without
damage to the system, since its functionality is independent of that of the rest of the system. Thus,
as the model is made more and more adequate, the simulation environment may be used to test it
without modification.

4.7 Task Decomposition

4.7.1 Task Decomposition Overview

The Task Decomposition Display was created specifically to demonstrate the concepts developed
for Phase III concerning the relationship of the pilot's activities to specific equipment design
features. It is intended to show how varying the design of crew station equipment affects a crew
member's activities. The display provides a clear method of presenting which activities are
affected by design and which are design independent.

This display was developed for the Phase III demonstration and will be revised during future
development.

A3I Phase III Symbolic Modeller CSCI Page A-52

Title Pane Lisp Listener Pane

' /Task Decomposltlon

Describe Activity Clear Select Desi scribe Design

(Task Decomposition Display Pane)

(Scroll Bars)

Figure 4.10 Task Decomposition Display

4.7.2 Task Decomposition Display

TASK-DECOMP-FRAME flavor

Defines a constraint frame flavor for TASK-DECOMP-FRAME objects
The following instance variables are used:

td-title-pane
d-mode-pane
d-listener-pane
d-display-pane
select-activity-menu
describe-activity-menu
select-design-menu
describe-design-menu

The following Symbolics provided flavors are used as components:
tv:bordered-constraint-frame-with-shared-io-bu ffer
tv:process-mixin
tv:stream-mixin

A3I Phase III Symbolic Modeller CSCI Page A-53

(:INITTASK-DECOMP-FRAME :BEFORE) method
Purpose: See side-effects and source code.
Args: Ignored
Called by: (:MAKE-INSTANCE TASK-DECOMP-FRAME)
Returns: N/A
Side-affects: Has the following side-effects:

1. Sets the global variable *task-decomp-frame* to the
the constraint frame instance.

2. Defines the following panes:
a. td-title-pane
b. td-mode-pane
c. td-listener-pane
d. d-display-pane

3. Creates a process for mouse handling,
4. Sets the configuration.

(:INIT TASK-DECOMP-FRAME :AFTER) method
Purpose: See side-effects and source code.
Args: Ignored
Called by: (:MAKE-INSTANCE TASK-DECOMP-FRAME)
Returns: N/A
Side-affects: Has the following side-effects:

1. Sets the global variable *task-decomp-frame* to the
the constraint frame instance.

2. Sets variables for the different panes.
3. Sets various attributes for panes.
4. Creates the following tv:momentary menus:

a. select-activity-menu
b. describe-activity-menu
c. select-design-menu
d. describe-design-menu

(:SELECT TASK-DECOMP-FRAME :AFTER) method
Purpose: Exposes constraint frame when it it is selected.
Args: Ignored
Called by: System functions controlling window exposure.
Returns: N/A
Side-affects: Sends the instance an expose message.

(:REFRESH TASK-DECOMP-FRAME :AFTER) method
Purpose:
Args:
Called by:
Returns:
Side-affects:

Prints the title of the constraint frame in the title pane.
Ignored
System functions controlling window exposure.
N/A
Invokes the function named "title" with the arguments
"Task Decomposition" and td-title-pane.

A3I Phase III Symbolic Modeller CSCI Page A.54

(SELECT-ACTIVITY TASK-DECOMP-FRAME) method
Purpose: Enables the "select-activity-menu" tv:momentary-menu
Args: None
Called by: It is used as an constant by *TD-TOP-MENU* which is used

to created menu item lists in the command pane of the display
;;; (td-mode-pane command-pane
;;; :default-character-style (:dutch :bold :normal)
;;; :item-list ,*td-top-menu*

Returns: N/A
Side-affects: Provides the following side-effects:

1. Highlights select-activity in *TD-TOP-MENU*
2. Determines position for the select-activity-menu.
3. Sends an ":expose" message to the select-activity-menu.
4. Sends a ":choose" message to the select-activity-menu.
5. Sends a ":deactivate" message to the select-activity-menu.
6. Removes highlight from select-activity in *TD-TOP-MENU*

(DESCRIBE-ACTIVITY TASK-DECOMP-FRAME) method
Purpose: Enables the "describe-activity-menu" tv:momentary-menu
Args: None
Called by: It is used as an constant by *TD-TOP-MENU* which is used

to created menu item lists in the command pane of the display
;;; (td-mode-pane command-pane
;;; :default-character-style (:dutch :bold :normal)
;;; :item-list ,*td-top-menu*

Returns: N/A

Side-affects: Provides the following side-effects:
1. Highlights describe-activity in *TD-TOP-MENU*
2. Determines position for the describe-activity-menu.
3. Sends an ":expose" message to the describe-activity-menu.
4. Sends a ":choose" message to the describe-activity-menu.
5. Sends a ":deactivate" message to the describe-activity-menu.
6. Removes highlight from describe-activity in *TD-TOP-MENU*

(SELECT-DESIGN TASK-DECOMP-FRAME) method
Purpose: Enables the "select-design-menu" tv:momentary-menu
Args: None
Called by: It is used as an constant by *TD-TOP-MENU* which is used

to created menu item lists in the command pane of the display
,,,"" (d-mode-pane command-pane
;;; :default-character-style (:dutch :bold :normal)
;;; :item-list ,*td-top-menu*

Returns: N/A
Side-affects: Provides the following side-effects:

1. Highlights select-design in *TD-TOP-MENU*
2. Determines position for the select-design-menu.
3. Sends an ":expose" message to the select-design-menu.
4. Sends a ":choose" message to the select-design-menu.

A3I Phase III Symbolic Modeller CSCI Page A-55

5. Sends a ":deactivate" message to the select-design-menu.
6. Removes highlight from select-design in *TD-TOP-MENU*

(DESCRIBE-DESIGN TASK-DECOMP-FRAME) method
Purpose: Enables the "describe-design-menu" tv:momentary-menu
Args: None
Called by: It is used as an constant by *TD-TOP-MENU* which is used

to created menu item lists in the command pane of the display
;;; (d-mode-pane command-pane
;;; :default-character-style (:dutch :bold :normal)

:item-list ,*td-top-menu*;;;
Returns: N/A
Side-affects: Provides the following side-effects:

1. Highlights describe-design in *TD-TOP-MENU*
2. Determines position for the describe-design-menu.
3. Sends an ":expose" message to the describe-design-menu.
4. Sends a ":choose" message to the describe-design-menu.
5. Sends a ":deactivate" message to the describe-design-menu.
6. Removes highlight from describe-design in *TD-TOP-MENU*

(MAKE-ACTIVITY-ITEMS TASK-DECOMP-FRAME) method
Purpose:
Args:
Called by:
Returns:

Provides item list for the select-activity-menu
None
(:INIT TASK-DECOMP-FRAME :BEFORE)
A list with the following format:

((<menu-item-name-l>
:EVAL <form-1 to be evaluted>)

(<menu-item-name-n>
:EVAL <form-n to be evaluted>))

(MAKE-ACTIV1TY-DESC-ITEMS TASK-DECOMP-FRAME) method
Purpose: Provides item list for the describe-activity-menu
Args: None
Called by: (:INIT TASK-DECOMP-FRAME :BEFORE)
Returns: A list with the following format:

((<menu-item-name- 1>
:EVAL <form- 1 to be evaluted>)

(<menu-item-name-n>
:EVAL <form-n to be evaluted>))

A3I Phase III Symbolic Modeller CSCI Page A-56

(MAKE-DESIGN-ITEMS TASK-DECOMP-FRAME) method
Purpose:
Args:
Called by:
Returns:

Provides item list for the select-design-menu
None
(:INIT TASK-DECOMP-FRAME :BEFORE)
A list with the following format:

((<menu-item-name- 1>
:EVAL <form-1 to be evaluted>)

(<menu-item-name-n>
:EVAL <form-n to be evaluted>))

(MAKE-DESIGN-DESC-ITEMS TASK-DECOMP-FRAME) method
Purpose: Provides item list for the select-design-menu
Args: None
Called by: (:INIT TASK-DECOMP-FRAME :BEFORE)
Returns: A list with the following format:

((<menu-item-name-l>
:EVAL <form-I to be evaluted>)

(<menu-item-name-n>
:EVAL <form-n to be evaluted>))

TASK-DECOMP-FUNCTION method

Purpose: Old style of providing mouse tracking capabilities.
It reads mouse blips and determines what action should be
taken.

Args: A window instance.
Called by: This function is invoked in a separate process by the method

(:INIT TASK-DECOMP-FRAME :BEFORE) when initializing
the the display's constraint frame and runs continuously. When
it is called, a separate process is created.
Example:

The tv:process variable from the tv:process-mixin flavor
component is set to the following value:

tv:process '(task-decomp-function .'special-pdl-size 4000
:regular-pdl-size 10000)

Returns: N/A
Side-affects: Mouse handling capabilities.
Note: **

** NOTE **

** This is the old style of providing mouse handling capabilities **
** and should be replaced with Presentation system functions **

**

A3I Phase III Symbolic Modeller CSCI Page A-57

MAKE-TASK-DECOMP-FRAME function

Purpose:
Args:
Called by:
Returns:

Side-affects:

Makes task decompostion display frame
None
Initialization functions as needed

task-decomp-frame bound to a task-decomp
constraint frame display
If *task-decomp-frame* bound, kills previous value.

The following Symbolics function is used to assign a select key to access the task decomposition
display. This function is invoked when the file is loaded.

Task-decomp Mode = Select Symbol-Shift-a

(tv:add-select-key #k 'task-decomp-frame "Task-decomp Mode"
'(send *task-decomp-frame* :select))

4.8 Mission Simulation

4.8.1 Overview

ENVIRONMENTALMODELS

, "
I I_ TASK _

DECOIvlPOSITION MISSION
SIMULATION

SIMULATION RESULTS RECORED
AS ACTIVITIY HISTORIES

Figure 4.11 Mission Simulation

A3I Phase III Symbolic Modeller CSCI Page A-58

4.8.2 Simulation Requirements

The Symbolic Modelling CSCI produces objects which are used as input to the Simulation CSCI.
One of the objects, the pilot model, has a task decomposition represented as a list of activities
bound to the "activities" instance variable. These activities are structured in a manner to provide a
driving script for the pilot's behavior during the simulation. Other objects are available to the
simulation as active objects which respond in a manner similiar to the pilot model object or as
functional objects which respond not as result of having activities but rather as functional models
responding to state changes. As explained previously, the simulation module runs a simulation by
sending "TICK" messages to selected simulation objects. These objects, in turn, perform
whatever actions are appropriate for the duration of time that a "TICK" represents. When all
objects have completed processing, then the simulation issues another "TICK" message and the
cycle continues.

5.0 NOTES

5.1 Miscellaneous

A significant portion of the code developed in Phase III was created simply to develop the concept
of separate functional and physical models for each component. The structures used were guided
primarily by an evolving process and were intended only as prototype code to convey concepts. It
was never the intent that this code would represent basic structures which should be used as the
underlying structures for development in future phases.

5.2 Limitations

Many of the concepts developed in Phase III assumed the availability of mechanisms developed in
previous phases but did not explicitly use them. In fact, many of the mechanisms from previous
phases are incompatible with code developed in Phase III.
This is especially true in the area of displays. Most of problems concern low level Lisp
implementation issues and not the underlying concepts. Programmers should be aware of the
necessity to at least review, if not, rewrite previously developed code.

5.3 Future Directions

5.3.1 Activity Scheduling

Activity scheduling in previous phases has been accomplished by compile-time decisions as to the
temporal order of activity sequencing. The mechanism used was restrictive and often resulted in
arfifical nodes being created in an activity hierarchy simply to allow simple mixed temporal
relations between subactivities. Also, errors had been noticed in the assumption that temporal
constraints for goals will always be passed to all of the goal's subtasks. The temporal intervals
proposed by James F. Allen (See section 2.1) provide significant improvements for representing
temporal relations of activities and should be investigated further. It is important to observe that
sequencing of the activities have been accomplished by control spread across the activity tree and
internal to the activities themselves. The impact of external mechanism controlling the sequencing
of activities has not been estimated at this time.

A3I Phase III Symbolic Modeller CSCI Page A-59

5.3.2 Decision Modelling

A method for decision modelling was provided in Phase 1 for decision modelling. During Phase
II, although the method was still functional it was not utilized since the phase was focussing on
other areas. In Phase III, there was no attempt at decision modelling and some basic structures
concerning activities were changed. These changes will require that the decision modelling method
be revised, however, these revisions are basically at the lisp implementation level and the concepts
would essentially be the same. Changes proposed for activity scheduling may have significant
impact on the conceptual structure needed by the Phase I decision modelling method. The
following paragraph is taken from the Phase 1 documentation to provide a sample of the concepts
of the Phase 1 decision modelling. For detail information the reader is referred to the Phase 1
documentation.

There is a functional correspondence between the aircrew's division of tasks into
"Management Categories", and the way the software selects tasks to be performed.
In addition to structuring tasks by phase, or mission segment, experienced
aircrews cluster tasks according to the purposes they serve. For example, and
again at a fairly high level of abstraction, tasks are divided as those concerned with
flight, those associated with actual mission performance, and those in support of
maintaining both the aircraft's and the mission's integrity. The software structure
captures this functional distinction by providing a "slot" in the characterization of
activities that weights the importance of the activity (and consequently the
likelihood that it will be selected to be performed) based on the function it serves.
The ranking parallels the aircrew's concern for flight being of primary importance,
mission accomplishments next, and support activities third.

5.3.3 Aircraft Guidance

The requirement for defining the x, y, z, heading, and airspeed for each point in a route makes it
extremely difficult to define many normal flight maneuvers. It will be necessary to make
significant changes in the guidance module in order to model typical tactical flight scenarios.

5.3.4 Function Allocation

The methodology developed in Phase III for integrating functional and physical models of a
component seem appropriate for investigating methodologies for representing the process of
function allocation during the conceptual design phase.

5.3.5 Mission Modelling

Currently the mission object and the top-level mission activity are defined separately. It is
important that the relationships between the information normally provided in a operations briefing
(the mission object) and the pilot's interpretation of a mission (the top-level mission activity) to be
represented explicitly. At this time, the distinction between the actual mission requirements and an
attempt to perform a mission is unclear and as a result it is not clear by which standard the
performance of a mission should be evaluated.

Annex B

Army-NASA Aircrew/Aircraft Integration Program

A3I

Software Detailed Design Document:
View

prepared by

Andrew Lui

December 1988

Table of Contents

1.0 INTRODUCTION ... B-1
1.1 Identification .. B- 1

1.2 Scope ... B-1
1.3 Purpose .. B-1

2.0 RELATED DOCUMENTATION .. B-1

2.1 Applicable Documents ... B-2
2.2 Information Documents .. B-2

3.0 ENVIRONMENTS AND DESIGN APPROACH .. B-2

3.1 Requirements and Rationale ... B-2
3.2 Hardware Description .. B-3
3.3 Software Environment ... B-4

3.3.1 Interface with the Operating System .. B-4
3.3.2 Interface with Other Software Components B-4

4.0 DETAILED DESIGN DESCRIPTION ... B-4

4.1 Organization ... B-4
4.2 Unit Detailed Design ... B-7

4.2.1 Interface Manager Subsystem (IM) .. B-7
4.2.1.1 The IM data structures: imstrucs.h B-7

4.2.1.2 The Window Manager: imwind.c B-8
4.2.2 MultiGen Kernel Subsystem (KER) .. B-8
4.2.3 Data Base Logic Subsystem (DBL) ... B-8

4.2.3.1 The Flight Data Base data structures: fltfmt.h B-9
4.2.3.2 The Flight Data Base color routines: fltcolor.c B-10
4.2.3.3 The Flight Data Base logic routines: fltdbl.c B-10
4.2.3.4 The Flight Data Base input an output routines: fltio.c B- 11
4.2.3.5 The linkage between the MultiGen Kernel and
the Flight Data Base logic routines: fltlink.c B-12

4.2.4 Animation Kernel Subsystem (ANA) ... B-12
4.2.4.1 The Animation control module: animate.c B-14

4.2.4.1.1 Initialize Animation menu to the MultiGen

system: ANA_init 0 .. B-14
4.2.4.1.2 Control of ANA pulldown menu selection:
Anamenu 0 .. B-14
4.2.4.1.3 Get the animation set up file name:
Get_filename 0 ... B- 15
4.2.4.1.4 Read the content of the set up file:
Get_setup 0 ... B- 15
4.2.4.I .5 Echo the content of the set up file:
Setupanimate 0 ... B- 15
4.2.4.1.6 Check the validity of the world objects:
Checkbead 0 .. B- 15
4.2.4.1.7 Finish the set up process: Setupdone 0 B- 16
4.2.4.1.8 Open the world view window: Set_world 0 B-16
4.2.4.1.9 Open the moving view window: Set_copterl 0 B- 16
4.2.4.1.10 Do transformation on object for world view:
ANA_transformation 0 .. B- 17
4.2.4.1.11 Do transformation on the object for pilot
view: ANA pilotview 0 ... B-17
4.2.4.1.12 Form transformation matrix for sensor's view:
Sensorview 0 ... B- 17

Table of Contents

4.2.4.1.13 Form transformation matrix for sensor's view:
Observerview 0 .. B- 18
4.2.4.1.14 Form transformation matrix for fixed
camera view: Cameraview 0 .. B-18
4.2.4.1.15 Prepare for animation:
ANA_ethemeLready 0 .. B- 18
4.2.4.1.I6 Ready to read animation data:
ANA_communicate () B-18
4.2.4.1.17 Draw all windows: ANA_draw_pictures 0 B- 18

4.2.4.2 The Flight path module: path.c B-18
4.2.4.2.1 Define the flight path: PAT_define_path 0 B-18
4.2.4.2.2 Save user defined flight path: PAT_done 0 B-19
4.2.4.2.3 Locate the terrain surface: PAT trackplane 0 B-19
4.2.4.2.4 Fly Through the flight path: PAT_fly_path 0 B-19
4.2.4.2.5 Draw the flight path: PAT_draw flight_path 0 B-19

4.2.4.3 Read simulation data module: simdata.c B-19
4.2.4.3.1 Read data from a standalone file:
SIM_read standalone 0 ... B- 19
4.2.4.3.2 Read data from pipe file: SIM_mess2data 0 B-19
4.2.4.3.3 Terrain location adjustment:
Hi_res_adjustment 0 :................................ B-19

4.2.5 DMA Kernel Subsystem (TER) .. B-20
4.2.5.1 The standalone preprocessor module: readdma.c B-20
4.2.5.2 Converting elevation data into polygonal surfaces B-23

4.2.5.2.1 Read post file module: terdma.c B-23
4.2.5.2.2 DMA user interface module: terrain.c B-24

4.2.5.2.3 Generate terrain polygons module: terpoly.c B-24
5.0 NOTES ... B-24

5.1 Miscellaneous ii ... B-24
5.2 Limitations ... B-24
5.3 Future Directions .. B-25

6.0 USERS GUIDE ... B-25
6.1 Introduction .. B-25
6.2 Related Documentation ... B-25
6.3 Overview of Purpose and Functions ... B-25
6.4 Installation ... B-25

6.4.1 Installing MultiGen Software Environment B-25
6.5 Start-up and Termination .. B-26
6.6 Functions and Their operation .. B-27

6.6.1 Setting up for Phase III demonstration ... B-27
6.6.2 Creating model .. B-28
6.6.3 The Animation menu .. B-28
6.6.4 The Terrain menu ... B-31

7.0 APPENDICES .. B-31
7.1 Glossary, Abbreviations .. B-31

Appendix A The content of makefile for creating MultiGen executable BA-1
Appendix B The content of a script file for extracting data records
from DMA's DTED distribution tape .. BB-I
Appendix C The content of a script file for concatentate the disk files into
a single tape image disk file ... BC-I
Appendix D message.h ... BD-1

Table of Contents

Appendix E animate.menu .. BE-1
Appendix F animate.msg ... BF- 1

A3I Phase III Views CSCI Page B- 1

1.0 INTRODUCTION

1.1 Identification

This document establishes the requirements and detailed design of the Views Computer Software

Configuration Item (CSCI), which forms a part of the A3I Computer Program System.
Descriptions of the detailed processing requirements, structure, I/O, and control are provided for
each lower level Computer Software Component (CSC), units, or function contained within the
CSCI.

1.2 Scope

This document describes the functions, composition and the use of the Views software completed
for Phase III demonstration of the A3I simulation. This document assumes that the reader is

familiar with computer graphics concepts, computer animation, 3D geometric modeling techniques,
window oriented user interface, C programming language, UNIX operating system, Silicon
Graphics Inc.'s Graphics Library, and the intemai structure of MultiGen if modification of the
source code is required.

1.3 Purpose

The purpose of the Views software is to generate a set of tools for creating the A3I simulation
world. The adopted software package for the Views software is called MultiGen which is
developed by a company called Software Systems. MultiGen is a modeling system for creating and
editing of three dimensional graphics data bases. The software is written in C and extensively

modified by the A3I staff for the needs of the A3I simulation. The tools developed by A3I staffs
are:

(i) a capability to extract elevation data from any standard Level 1 Defense Mapping
Agency's (DMA) Digital Terrain Elevation Data (DTED) tapes and convert into a shaded 3D
graphics polygonal representation of terrain surface.

(ii) a capability to create the world objects, such as tanks, trucks, helicopters or any
objects to be included within the simulation world. Also, values of these world object's
dynamics parameters can be assigned, so that their behaviors can be monitored during
simulation.

(iii) a capability to display the whole simulation in different viewing perspectives, so that
the "big picture" of the simulation can be gleened. It is intended to help a designer to get a
good high-level view in near-real-time display of shaded graphics in which the simulation
is proceeding. Windows are displayed on the screen to show the simulation. Each window
represents a unique eye point location to monitor the simulation - such as the god's eye
view to look at the whole gaming area at a glance, an observer's view inside the gaming
area to monitor the movement of the convoys vehicles, a pilot's view to show what the
pilot could see at his position inside the cockpit.

2.0 RELATED DOCUMENTATION

A3I PhaseIII Views CSCI Page B- 2

2.1 Applicable Documents

Software Systems MultiGen - Modeler's Guidel Interface Manager, MultiGen Kernel,
Writing MultiGen DBL, Release 3.0, Software Systems, San Jose, September 1988.

Data Format Specification for Software Systems Flight Data Bases, Format Release 4, July
28, 1988.

Software Systems MultiGen, DMA Terrain Conversion Option User's Guide, (July,
1988).

Andrew P. Lui, Phase H Views Software - Software Component Description Documents

for A3I Program, 1988.

2.2 Information Documents

Brian W. Kernighan and Dennis M. Ritchie, The C Progrcunming Language, Prentice-Hall,
Englewood Cliffs, N.J., 1978.

Marc J. Rochkind, Advanced UNIX Programming, Prentice-Hall, Englewood Cliffs,
N.J., 1985.

J. D. Foley and A. Van Dam, Fundamentals oflnteractive Computer Graphics, Addison-
Wesley, Reading, Massachusetts, 1982.

Nadia Magnenat-Thalmann and Danial Thalmann, Computer Animation, Theory and
Practice, Springer-Verlag, Tokyo, 1985.

Silicon Graphics Inc., IRIS User's Guide, Volume I and II, Version 3.0, Mountain View,
California, 1986.

Silicon Graphics Inc., IRIS Programmer's Manual, Volume IB, System Calls and
Subroutines, Version 2.1, Mountain View, California, 1986.

DMA Aerospace Center, Defense Mapping Agency (DMA) Product Specifications for
Digital Terrain Elevation Data (DTED), PS/ICD/200, PS/ICF/200, Second Edition, St.
Louis, Missouri, April 1986.

3.0 ENVIRONMENTS AND DESIGN APPROACH

3.1 Requirements and Rationale

The Views CSCI of the A3I Phase HI software was developed with at least these goals in mind:

• To rapidly create and/or edit 3D geometric models of simulation objects.

• To provide a high-level, intuitive look at the progression of the Mission Simulation for
the cockpit designer and mission analyst.

A3I Phase III Views CSCI Page B- 3

• To provide, at a cost well below that of visual simulation systems and at a speed that
was not necessarily real-time but at least interactive, a 3D display of the events of the
simulation from continuously variable viewpoints.

• To enhance the 3D viewing, not with excessive levels of detail, but with graphic cues
sometimes more informative than the bird's-eye view of events.

• To incorporate interactive graphic tools for constructing and displaying, with a
minimum of difficulty, a 3D world sufficient to portray the Mission Simulation.

• To provide a convenient interface capability for integrating the 3D graphics system with
the simulation system.

• To avoid the high cost of developing much of the 3D graphics and geometric modeling
software by buying and integrating as much of it as possible.

The aspects of the IRIS 2500T important to Phase III development were a fast graphics engine in
an inexpensive workstation; an extensive library to exercise the engine; a UNIX program
development environment, with tools that axe widely used and that therefore require little learning
for those who have used a UNIX system before; and a relatively powerful CPU for the price (a
68020-series processor with floating-point accelerator).

MultiGen was intended to provide both a means of constructing and editing the geometric objects
of the 3D world, and a library of tools for displaying those objects based on instructions provided
by the Mission Simulation.

3.2 Hardware Description

The IRIS 2500T as configured for this project contains a 68020 central processing unit, a floating-
point accelerator for the CPU, 12-megabyte program memory, a frame buffer or image memory of
1024x1024x32 bits, a geometry engine for 3D coordinate transformations, a proprietary
microcoded display processor and frame-buffer controller, a 19-inch 60 Hz non-interlaced
1024x768 RGB color monitor, an Ethemet interface with TCP/IP and NFS softwares, a keyboard
and a mouse for user input, and two 440-megabyte disk drives.

Of the above mentioned hardware, the most important one is the combination of the geometry
engine and display controller in the graphics pipeline which provide high speed rendering and fast
3D transformation into 2D images. Several other elements are also important too. The Ethernet
controller makes possible the interfacing of a Symbolics 36XX and the IRIS without hardware
development. The integration of the IRIS graphics library, with input devices, including a mouse,
a button box and a dials box, make it possible to use these devices easily by calling library
functions only. Finally, the large disk drives have proved useful for storing sizable quantities of
graphics data and code.

The Views/MultiGen software is not limited to IRIS 2500T machine only. Basically, the
Views/MultiGen can be run across the product line designed by Silicon Graphics Inc. For
example, the Views/MultiGen software can be run in the IRIS 4D/GT machine if all the source
code is complied properly. Chapter 6 describes how to install Views/MultiGen in the machine.

A3I Phase III Views CSCI Page B- 4

In addition to the 2500T, a HP VT100 emulation terminal is used to aid in debugging by allowing
source code to be displayed while graphic images are on the IRIS.

3.3 Software Environment

The most important elements of the IRIS 2500T software environment to the Phase 13I of A3I
Views software are :

• A general-purpose, easy-to-use graphics library, the IRIS Graphics Library II (GL2).

• A standard Ethemet interface protocol (TCP/IP).

• The UNIX V operating system with Berkeley (4.3 bsd) extensions. C compiler, a
development/debugging environment integrated with the C compiler and UNIX tools.

• The Software Systems' Interface Manager which provides a mouse and window
oriented user interface on the IRIS workstation. This type of interface was originally
developed by The Xerox Palo Alto Research Center (PARC) and has been popularized by
the Apple Macintosh computer. MultiGen is written under the Interface Manager
environment in which commands are typically selected from a pull-down menu by a cursor
positioned with a mouse.

3.3.1 Interface with the Operating System

The Views software makes use of system calls which invoke UNIX primitive operations and other
system subroutines and libraries. These functions are documented in Sections 2 and 3 of the UNIX
Programmer's Manual, Volume IB : System Calls and Subroutines.

3.3.2 Interface with Other Software Components

The animation portion of the Views software can be operated in two different modes -standalone
mode and communication mode. In standalone mode, the Views software gets the simulation data
from a data file. In communication mode, the Views software communicates only with the
Executive which is also running on the same IRIS 2500T. The Executive sends simulation data to
Views software through a named pipe file (or FIFO). Detail description on this inter-process
communication feature can be found in a book called Advanced UNIX Programming by Marc J.
Rochkind (Prentice-Hall, 1985). The Views software uses the "read" system call to get all the
simulation data from the pipe file, then animates the simulation objects (helicopters, convoy
vehicles and missiles) in a 3D graphics world that consists of the gaming area. The content, format
and commands for this communication are described in the Phase II document on the A3I
Executive Module.

4.0 DETAILED DESIGN DESCRIPTION

4.1 Organization

The Views software is integrated within the MultiGen system. MultiGen is an interactive modeling
system for creating, editing, and viewing 3D data bases for visual simulation. The original

A3I Phase III Views CSCI Page B- 5

MultiGen system is composed of three separate software subsystems--the Interface Manager
Subsystem, the MultiGen Kernel Subsystem and the Data Base Logic Subsystem which are linked
together to make an executable MultiGen program. On top of the original MultiGen system, the
A3I staff created two additional software subsystems for our simulation requirements. The two
newly added subsystems are the Animation Kernel Subsystem and the DMA Kernel Subsystem.
The MultiGen system is implemented on the Silicon Graphics Workstation Iris 2500T. The
Graphics Library of the IRIS 2500T is a set of graphics and utility routines that provide high/low
level support for graphics. Figure 1 shows the name of each source code file and how they are
organized in Views software.

The Interface Manager Subsystem is a collection of procedures that support a mouse and
window oriented user interface. This subsystem accepts all the commands from the user

and passes to the appropriate subsystem.

The MultiGen Kernel Subsystem consists of a programming environment and a graphics
editor. The programming environment provides procedures that can be called to create or
manipulate MultiGen's internal format and parts of the user interface, and to perform other
utility functions.

The Data Base Logic Subsystem (DBL) provides data base independence in MultiGen. Its
functions are to access an "ofmt", or original format, for the MultiGen Kernel to handle
user interface issues such as coordinate displays, terminology and modes, and to provide
special purpose menu functions for an "ofmt". It is implemented as a series of low level
procedures that are called from MultiGen Kernel via the DBL linkage.

The Animation Kernel Subsystem provides a facility to view the A3I Mission Simulation in
different viewing perspectives using 3D graphics. Windows are displayed on the screen to
present the views. The Animation Kernel Subsystem obtains simulation data from the
Executive program through inter-process communication pipeline or reading from a data
file.

The DMA Kernel Subsystem is used to extract elevation data from any standard Level 1
DMA DTED tape and convert into a shaded 3D polygonal representation of the terrain
surface. The generated terrain surface is saved into a data base file for later editing.

A3I Phase III Views CSCI Page B- 6

IRIS 2500T Graphics Library (GL2)]

_r

Interface Manager

imcont.c imlib.c immem.c imde.c
immenu.c imtext.c imwind.c

_r

MultiGen Kernel

mgmain.c mgille.c
mgmath.c mgdesl_c
mgidisp.c mgcont.c
mgiconst.c mglcre.c
mgiedit.c mglfun.c
mgilib.c mgiman.c
mgiufl.c mgpage.c
mgicnstr.c mgcom.c
mgdbvw.c mgdev2d.c
mgiconstr.c mgidlc
mginfo.c mgistruc.c
mgixform.c mgstd.c
mgtab.c mgipick.c

Animation Kernel

animate.c
simdata.c
a31tcp.c
path.c

r

DMA Kernel

terrain.c
terpoly.c
terfont7.c
terdma.c

Data Base Loglc {for Flight data base format}

fltcolor.c fltdbl.c fltid.c fltio.c fltlinkc fltpage.c

Figure I Organization of files in Views software

A3I Phase III Views CSCI Page B- 7

4.2 Unit Detailed Design

4.2.1 Interface Manager Subsystem (IM)

The Software Systems' Interface Manager Subsystem (IM) is a collection of C procedures that
support a mouse and window oriented user interface on the Silicon Graphics Iris workstation. It
provides the interface between the user and the application program. The Interface Manager
imposes an architecture on the application program that is appropriate for a random sequence input
from the user.

Basically, the Interface Manager (IM) source code is organized in seven separately compilable
source modules. Externally callable procedures in the IM are preceded by a three letter module
prefix and an underscore. Table 4-1 shows the modules that contain the source code for the IM.

Module Name Prefix P_rpos¢

imwind.c IWM_
imlib.c ILI_
immem.c IMM_
imcont.c ICM_
imtext.c liE_
immenu.c IME_
imde.c IDE_

Desktop and window managers
Interface manager library
Memory management
Control manager
Text editor manager
Menu manager
Message and documenter/editor manager

Table 4-1. Interface Manager Source Modules

Detailed information on the Interface Manager Subsystem environment, procedures and
organization can be found in Software Systems MultiGen , Programmer's Guide to the Interface
Manager, Release 3.0, September, 1988. This documentation only describes those changes made

by the A3I staff for our simulation. The source code of the entire Interface Manager Subsystem
resides in "Orca", our (IRIS 2500T), under the directory of "/fl/mg3.0/Im".

4.2.1.1 The IM data structures: imstrucs.h

The definitions of IM data structures and defined constants are found in the file "imstrucs.h". A
four-byte integer word (windowtype) has been added to the window data structure "
windowstruc". The purpose of windowtype is used to specify the type of window for animation.
If windowtype is zero, this window is a regular MthltiGen window. If windowtype is 1, this
window is for "World View" during the simulation. If windowtype is not equal to 1 or 0, this
window is for observer's view. The following is a complete revised listing of the window data
structure which is defined in file "imstrucs.h".

typedef struct wstruc {
struct wstruc *nextwindow;/* pointer to next window below */
struct wstruc *lastwindow;/* pointer to window above this one */
int active; /* true if this window is active */
int shadow; /* TRUE to draw a shadow around window */
rectangle view; /* the window in screen coords */
point contentdelta;/* the content location from window lower left */

A3I Phase III Views CSCI Page B- 8

point contentsize; /* the size of content or offset from upper right */
rectangle content; /* the rectangle surrounding content */
int windowcontrols; /* the window controls */
int type; /* the window type, DESKTOPWINDOW */
int wdl; /* a pointer to the window's display list */
controlpt control; /* pointer to 1st control in window */
textedpt texted; /* pointer to 1st text in window */
char texton; /* TRUE if text edit active */
docedpt de; /* pointer to doced info if doced window */
int backgroundcolor; /* the color to paint window background*/
char title [MAXTITLE]; /* the title of the window, NULL if none*/
int misc; /* can be used for any purpose by user */
int (*redraw) 0; /* the procedure to draw the contents */
int (*contentproc) 0; /* called when mouse pressed in content */
int (*deactiveproc) 0; /* called when window deactivated */
int (*trackproc) 0; /* called when mouse over window and no

buttons down */
int (*toppermproc) 0; /* called to ask permission to bring window

to top */
int (*topproc) 0; /* called when window brought to top */
int windowtype; /***** A3I *****/

} windowstruc, *windowpt;

4.2.1.2 The Window Manager: imwind.c

The window manager is a set of functions that work with window data structures to manage and
draw windows. Also, it has a set of functions to service events in the Iris event queue and mouse
buttons. When user input is sensed, it called the appropriate IM or application procedure to service
the event. Two functions, namely IWM_windowinit 0 and IWM_waitforevent 0, in this file have
been modified for the A3I simulation.

• IWM_windowinit 0 - A statement "IWM_communication = FALSE" is added at the
end of this function which is used to set the current state to the regular "create and edit"
mode, i.e. not in animation mode.

• 1WM_waitforevent 0 - This procedure provides an infinite loop which polls the Iris
event queue and mouse buttons. In addition to that, statements are added to check whether
the Views software is in the animation mode. If it does, a call to the procedure
ANA_communicate 0, which will be described in detail in Animation Kernel Subsystem, is
made in order to process this option.

4.2.2 MultiGen Kernel Subsystem (KER)

Detailed information on the MultiGen Kernel Subsystem environment, procedures and organization
can be found in Software Systems MultiGen , Programmer's Guide to the Interface Manager,
Release 3.0, September, 1988.

4.2.3 Data Base Logic Subsystem (DBL)

A3I PhaseIII Views CSCI PageB- 9

The purpose of the Data Base Logic Subsystem (DBL) is to provide data base independence in
MultiGen; a different DBL is written for each data base format that operates with the Views
software. Its functions are to access the data base file for MultiGen Kernel, to handle user interface
issues such as coordinate display, terminology and modes, and to provide special purpose menu
functions for the data base format.

A DBL subsystem is implemented as a series of low level procedures that are called from the
MultiGen Kernel via the DBL linkage. They have a strictly defined function and calling sequence
and are invoked to perform some task for the Kernel that can only be done by a procedure that
understands the data base format and how it relates to the MultiGen internal format (ifmt). DBL is a
subsystem, and as such it can have it own set of global and static variables low level utility
procedures.

DBL procedures are called from the Kernel through a DBL linkage module. The use of this module
allows all DBL procedure names to have the module prefix, so that a call to the DBL from the
Kernel is always to a procedure with a DBL_ prefix. The DBL linkage module makes the
procedure linking between the Kernel and the DBL very tight. The DBL linkage procedures should
never contain programming logic. They call another procedure with the same suffix and calling
conventions as the DBL procedure. A complete description of the Data Base Logic subsystem can
be found in Software Systems MultiGen, Programmer's Guide to Writing MultiGen DBL, Release

3.0, September, 1988. The following is a description to those changes made by A3I staffs.

Phase IU Views software adopted a simplified data base format called "Flight" (FLT) which is
developed by Software Systems to support both simple and relatively sophisticated real time
software applications. For a complete description on the Flight data base format, please consult
Data Format Specification for Software Systems Flight Data Bases, Format Release 4, July 28,
1988. The source code of the Flight data base logic is organized in six separately compilable source
modules and can be found in orca (Iris 2500T) under the directory of "/fl/mg3.0/Mg/Flt". Table
4-2 shows the modules that contain the source code for the DBL.

Module Name Prefix Purpose

flflink.c DBL_
fltcolor.c FLC_
fltdbl.c FLT_
fltid.c FID_
fltio.c FLIO_

fltpage.c FPG_

MultiGen to DBL linkage routines
Hight data base color routines
Hight data base logic routines
Hight DBL identification related processes
Handle input and output DBL for the Hight
data base

Related to modify attributes command by
accessing the data base attributes for ifmt
beads

Table 4-2 Data Base Logic Source Modules

4.2.3.1 The Flight Data Base data structures: fltfmt.h

The definitions of the Hight data base data structures and defined constants are found in the file
"fltfmt.h". A slight modification has been made to this file so that color can be assigned to the
vertices of a polygon. The following is a revised listing for the vertex's data structure.

A3I Phase HI Views CSCI Page B- 10

/* vertex record (no longer used: contains the id) */
typedef struct {

rechdr rheader;
icoord p; /* coordinate */

/***** A3I *****/
short vcolor; /* vertex color */

/***** A3I *****/
} fvertex, *fvertexpt;

/* short vertex record */
typedef struct {

srechdr rheader,
icoord p; /* coordinate */

/***** A3I *****/
short vcolor; /* vertex color */
short spare;

/***** A3I *****/
} fvertexs, *fvertexspt;

4.2.3.2 The Flight Data Base color routines: fltcolor.e

The file "fltcolor.c" has a set of functions to define the color of the Flight data base format, to
display the color palette and to modify the color definition. The DBL is assigned a subset of the
workstation color space to map into data base format's color palette. Several functions in this file

have been modified due to the additional color requirements of the A3I Cockpit Display Editor (
CDE) CSCI. The name of these functions are FLC_colormap 0, FLC_iris2dbl 0, and
FLC_dbl2iris 0.

• FLC_colormap 0 - Originally, the starting color map index for the Flight data base
format is specified by the MultiGen Kernel. However, due to the requirement for the CDE
to replicate the wide range of colors found in a typical cockpit, a set of color indexes
ranging from the starting color map index (specified by the MultiGen Kernel) to 511 is
reserved. Therefore, the starting workstation color index number is changed to 512. It is
accomplished by redefining a local global variable "Colorstart" to 512. The statement -
"Colorstart = 512" is added before calling the procedure FLC_loadmap 0.

• FLC_iris2dbl 0 - The data base color indexes for the Cockpit Display Editor are saved
in terms of negative numbers. Therefore, a special provision is added to check the value of
the Iris workstation color index. If the value of the workstation color index is less than

"Colorstart", then this number is subtracted from "Colorstart" before returning to the
calling function.

• FLC_dbl2iris 0 - The'data base color indexes for the Cockpit Display Editor are saved
in terms of negative numbers. Therefore, a special provision is added to check the sign of
the data base color index first before converting to Iris workstation color index. If the data
base color index is negative, then a value equivalent to "Colorstart" is added to this data
base color index before returning to the calling function.

4.2.3.3 The Flight Data Base logic routines: fltdbl.e

A3I PhaseIII ViewsCSCI PageB- 11

The default unit of measure for the Flight data base is changed from meters to feet. It is
accomplished by commenting the original statements and replaced by the following statements.

/* Original statements */
/*char Unitstring [6] = "m"; /* current data base unit string */
/*int Fit_units = 0; /* current data base unit code */
/*int Flt_udiv = -10ft, /* current data base divisor */
/*char Lfmt [40] = "% 11.2f%sha% 11.2f%skn% 11.2f%sha"; */
/*char Sfmt [10] =" %4.2f%s"; */
/* New statements */
char Unitstring [6] =; /* current data base unit string in feet */
int Fit_units = 4; /* current data base unit code in feet */
int FlLudiv = -3072; /* current data base divisor in feet */
char Lfmt [40] = "% 11.4f%skn% 11.4f%skn% 11.4f%skn";
char Sfmt [10] =" %6.4f%s";

• FLT_init 0 - The auto-write option is deleted by commenting out the statement which
calls the function IME_checkcommand 0.

• Grid_init 0 - The default grid spacing is redefined according to the selected internal
resolution "COM_intemal_resol".

• Si2float 0 - A check to the variable "DH_Displaycoordtype" is added. If
"DH_Displaycoordtype" is equal to 2, then outputs the results in terms of inches in the
tracking window.

• Float2si 0 - A check to the variable "DH_Displaycoordtype" is added. If
"DH_Displaycoordtype" is equal to 2, then accepts the user input in terms of inches from
the tracking window.

• FLT_dmacolor 0 - The number of colors for DMA option is changed from 11 to 74.
This change adds more colors to the generated terrain surface.

4.2.3.4 The Flight Data Base input an output routines: fltio.e

The file "fltio.c" has a set of procedures to handle the input and output functions for the Flight data
base. These functions include the opening and closing the data base file, reading the informanon
from the data base file and putting these information into the MultiGen kemel's ifmt, and acting as
data base logic menu handler. Since the Flight data base format is still in evolving stage, therefore,
modifications are required in order to read the earlier versions of Flight data base files. A local
static variable "Oldfile" is added to this module to identify whether the incoming file is in the latest
version of Flight data base format or not.

• Builddbl 0 - A provision is added to check the file header. If the variable "ihattr-
>attributes.udiv" is equal to zero, then set the variable "Oldfile" to TRUE. Consequently,
the variables "ihattr->attributes.units" and "ihattr->attributes.udiv" need to be reset to 4 and

"-COM_intemal_resol" respectively.

° *F2ibead 0 - All modifications made in this procedure are related to adding an extra
argument in function IL_addivertex 0. Please refer to module mgilib.c for more detail.

A3I Phase !II Views CSCI Page B- 12

4.2.3.5 The linkage between the MultiGen Kernel and the Flight Data Base logic
routines: fltlink.c

All modifications made in this module are related to controlling the display of either the data base
attribute window or the descriptive data base window. The variable "DH_Displaycdetype" defines
the type of display which is specified by the user. A provision to check the value of the variable
"DH_Displaycdetype" is added to the following routines - DBL_mod_attr 0, DBL_getfieldtype 0,
DBL_getelement 0, DBL_getfield 0, DBL_.getstring 0, DBL_putfield 0, DBL_pagegeneral 0.

4.2.4 Animation Kernel Subsystem (ANA)

The Animation Kernel subsystem is an option developed by A3I staff as an added on to MultiGen

system. Its main purpose is to generate different views for displaying the events of the A3I mission
simulation in 3D graphics form. Windows are displayed on the screen to present the world view,
observer's view, lead or wing helicopter view and etc. The user has the option to control the
number of windows to be presented. The Animation kernel subsystem obtains simulation data,
such as the location of the world objects, from a predefined standalone data file or from the
simulation executive program through inter-process communication pipeline.

The source code of the Animation Kernel is organized in three separately compilable source
modules. Externally callable procedures in this subsystem are preceded by a three letter module
prefix and an underscore. Table 4-3 shows the modules that contain the source code for the
Animation kemel. The source code of the following files can be found in orca (Iris 2500T) under
the directory of "/fl/mg3.0/a3i". Figure 2 shows a layout of the Animation subsystem kernel in
block diagram form.

Module Name Prefix

animate.c ANA_
path.c PAT_
simdata.c SIM_

Animation control module

Flight path selection module
Reading simulation data module

Table 4-3. Animation Kemel Source Modules

A3I Phase III Views CSCI Page B- 13

Miscellaneous
controls

ANA_init 0
Anamenu 0
Define sensor_loc 0
Restart_sensor 0
Define restricted_fov 0
Restart_fov 0
Define_observer_loc 0
Restart_observer 0
ANA_resume_flight 0

Flight Path

PAT. define_path 0
Openpathfile 0
PAT_done 0
PAT trackplane 0
PAT_fly_path 0
Followpath 0
Read_flight_path 0
Set_value 0
Flightstart ()
ME_define_path 0
PAT_readanddraw 0
PAT_draw_flight_path 0
PAT_change_done 0
PAT_getflename 0
Read_fit_file 0

Animation

Kernel

_V
"1

Set Up
Animation

Get_filename 0
SeLworld 0
Set_copter1 0
Check_dl 0
Get_setup 0
Setupanimation 0
Setupdone 0
Checkbead 0
Killwindow 0
Initialize_Obj 0
Moving_camera 0
Camerabutton 0
Killcamerawindow 0
Fix_camera 0
Opencamerawindow 0
ANA_stationary_camera 0

_y
Communication

ANA_ethernet_ready ()
ANA_communicate ()
Receive_message 0
SIM_read_standalone 0
SIM_mass2data 0
Hl_res_djustment 0

f

Graphics
output

J

ANA draw_pictures 0
ANA transformation 0

i ANA ,ilotview 0
Heaq p_display 0
Dra_ vlewbox 0
Dra_ heading 0
Drm altitude 0
Drm scale 0
Sho tick 0
Sensorview 0
Observerview 0
Cameraview 0
Dra' yclic win 0
Dra _edal wln 0
Dra colective_win ()
Open_cyclic_win 0
Open_collective_win 0
Open_pedal_win 0

; Open_control_win 0
Dra timing 0
AN, _hud_display 0
Hudfunc 0

Simulation data from standalone)data file called "l_hase2.float"

Figure 2 Layout of Animation Subsystem Kernel

A3I Phase HI Views CSCI Page B- 14

4.2.4.1 The Animation control module: animate.c

4.2.4.1.1 Initialize Animation menu to the MultiGen system: ANA_init 0

The procedure ANA_init 0 is called by the main procedure in MultiGen Kernel subsystem. The
primary purpose of this procedure is to add the animation menu to the MultiGen's pulldown menu
system and initialize the animation message file. Two files are opened by ANA_init 0:

animate.menu - a text file for animation pull-down menu.
animate.msg - a text file for defining the messages and templates used by animation kernel.

Please consult Software Systems MultiGen, Programmer's Guide to the Interface Manager,
Release 3.0, September, 198_8. for detailed information on how to set up the menu and message
files.

4.2.4.1.2 Control of ANA pulldown menu selection: Anamenu 0

The function Anamenu 0 is called when user places the cursor on the Animation menu and picks
an item from the pulldown menu.

Anamenu (m, id) /* called when ANA pulldown menu selected */
menupt m; /* animation menu pointer */
int id; /* the number of the selected item */

menu,
all the

The purpose of this function is to accept the user's input, i.e., the item selected from the
and to call the appropriate procedure to process the command. The following is a listing of
commands which can be found in the animation menu:

.

2.
3.
4.
5.
6.
7.
8.
9.
10.
!1.

q2.
13.
I4.

q5.
16.
17.

18.
19.

20.

Setup - to get user input for setting up the animation process.
World View - to open up a window for showing the world view.
Moving camera - to open up windows for showing pilot/driver view.
Fix camera - to define and open up windows for observer's view.
Head Up Display - to turn on/off the head up display mode.
Ethernet - to start the animation process.
Stop Animation - to stop the animation process.
Resume Animation - to resume the animation process.
Define Flight Path - to define a flight path for the lead helicopter.
Fly Thru Path - to run the animation using a predefined flight path file.
Freeze - to temporary stop the animation.
Single Tick - to run the animation in a tick by tick base.
Restricted Pilot view - to show the pilot view in a restricted pilot view form.
Define Field of View - to define the field of view for the restricted pilot view.
Define Sensor Location - to specify the location of a sensor for sensor's view.
Full Screen - to display the current window using the whole screen.
4D to Iris - to send the simulation data from one Iris machine to another Iris machine
(from coral to manta only).

Show Timing - to show the time it takes to render one tick of the simulation picture.
Control Display - to display the cyclic, collective and pedal controls in symbolic form.
Define Observer's Location - to define the location of the observer relative to the lead
helicopter.

A3I Phase III Views CSCI Page B- 15

21. Draw Flight Path - to draw the user's defined flight path.
22. Change Way Point - to change the flight path while in the middle of executing the "Fly

Thru Path" command.
23. HUD - to turn on/off the HUD.

4.2.4.1.3 Get the animation set up file name: Get_filename 0

The purpose of this procedure is to let the user type in the name of the set up file. It is called when
the user selects the "Setup" command from the Animation menu. The default set up file name is
"768animateflt.doc", however, the user can redefine it by typing in another file name. Once the
user hits the carriage return key, function Get_setup 0 is called.

4.2.4.1.4 Read the content of the set up file: Get_setup ()

The purpose of function Get_setup 0 is to open the set up file and read its content. The content of
the file is arranged so that it contains the name of the world objects and their corresponding
graphics identification number. In addition, it contains the graphics identification numbers of the
cockpit instruments for the lead helicopter. Each line in this file represents one moving object in the
simulation world. The first entry of every line is the object's name. The second entry is the
graphics identification number of the object used in MultiGen. The third entry is the graphics
identification number of the same object after destroyed or exploded. The sequence of these objects
in this file dictates the order of displaying these objects during animation. If cockpit instruments are
.included in the simulation, enter an asterisk on a new line and then follow with their graphics
identification numbers. A sample animation set up file is listed in the following figure.

Lead_Helicopter_H419
Wing_Helicopter_H836
Jeep
Missile_Launch_l
Tank
Truck_l
,

G1 G2 G3 G4 G5
Gll G12 G13 G14
G21 G22 G23 G24

LEAD 0
WING
JEEP 0
LAUNC 0
TANK
TRUCK 0

0

0

G6 G7 G8 G9 G10
G15 G16 G17 G18 G19 G20
G25 G26 G27 G28 G29 G30

Figure 3 The content of animation set up file

After it finishes reading the whole set up file, function Setupanimate 0 is called to echo the
information.

4.2.4.1.5 Echo the content of the set up file: Setupanimate 0

Function Setupanimate 0 is used to display the content of the set up file and the user can
interactively change the information if desired. This is limited to echoing the information of the
world objects only and no information on the cockpit instruments will be shown. Function
Setupdone 0 will be called when the user is satisfied with all the input and hits the "DONE" button
in the echo window.

4.2.4.1.6 Check the validity of the world objects: Checkbead 0

A3I Phase HI Views CSCI Page B- 16

All user specified world objects in the set up file will be checked for their existence in the data base
file by funcdon Checkbead 0 which is called by function Setupdone 0.

ibeadpt Checkbead (w, string)
windowpt w; /* current data base window pointer */
char *string; /* graphics id string of the world object */

The ibead pointer is returned to the calling routine if the id string of the world object specified by
the user is found in the data base file. Otherwise, a null pointer is returned.

4.2.4.1.7 Finish the set up process: Setupdone 0

This function is called when the user hits the "DONE" button in echowindow. It calls function

Checkbead 0 to check the validity of all user specified world objects and then updates the value for
variables "Max_cockpit_items" and "Max_object". Next, it calls function Set_world 0 to display
the world view window. In addition to the above functions, this function also performs the
preparation works for moving camera view and stationary camera view. In order to display those
view, a rotation matrix (Ground_matrix) is needed. It can be obtained by rotating the Iris' ground
level plane (XZ plane) to A3I model's ground level plane (XY plane). The following code
segment illustrates how it works :

pushmatrix 0; /* save the original matrix in matrix stack */
loadmatrix (Identity);/*put an identity matrix at the top of the matrix stack */
/* Iris Z-axis is pointing outward and X-axis is pointing to the right */

rotate (-900, 'x'); /* bring Z-axis pointing upward */
rotate (900, 'z'); /* bring X-axis pointing inward */
getmatrix (Ground_matrix);/* save the matrix in Ground_matrix */
popmatrix 0; /* restore the original matrix from stack */

For stationary camera's views, the stationary window array is initialized. Each element of the
stationary window array "Camera_posptr []" is a record. The type definition of the record is as
following:

typedef struct { /* record for all stationary camera */
int id; /* window identification number */
float x, y, z; /* location of the stationary camera */
int yaw; /* look at direction of the stationary camera */

} fixcamera, *fixcameraptr,

static fixcameraptr Camera_posptr [10];

4.2.4.1.8 Open the world view window: Set world 0
!

Function Set_world 0 is called either by function Setupdone 0 or when the user selects the World
View command from the Animation menu. The main purpose is to open up a window to show the
god's eye view of the gaming area and redefine some of the viewing parameters.

4.2.4.1.9 Open the moving view window: Set_copterl 0

A3I PhaseHI Views CSCI PageB- 17

Function Set_copterl 0 is called when the user selects the "Moving Camera" command from the
animation menu. The main purpose of this function is to open up a window to show what the
pilot/driver would see inside the vehicle.

4.2.4.1.10 Do transformation on object for world view: ANA_transformation ()

Procedure ANA_transformation () is called by function Drawbead 0 in file module mgidisp.c. The
following statements define the header of this procedure.

ANA_transformation (ib)
ibeadpt ib; /* world object's ibead pointer */

The main purpose of this procedure is to move the object to its new location in the simulation
world when the world view is displayed. It is accomplished by doing a translation to the new
position and then the rotations about the yaw, pitch, and roll axes. Due to different definition of
the north direction in the graphics world and the object world, a subtraction of 90 degrees from
yaw is required. The pointer for the object's dynamic values is obtained from the incoming ibead
pointer "ib->gdbinfo".

4.2.4.1.11 Do transformation on the object for pilot view: ANA_pilotview ()

Procedure ANA_pilotview () is called by function IDR_setport 0 in file module mgidisp.c. The
following statements define the header of this procedure.

ANA_pilotview (w, pitch, roll, yaw, tranx, trany, tranz)
windowpt w; /* window pointer for the current window */
float pitch, roll, yaw;
float tranx, trany, tranz; /* not used */

The main purpose of this procedure is to form a transformation matrix when either the moving
camera view or the stationary camera view is displayed. This procedure checks the value of the
variable "windowtype" to determine the calling procedure. If the current window is for a stationary
camera view, procedure Cameraview 0 is called. If the current window is for the lead helicopter
observer's view, procedure Observerview 0 is called. If the current window is for either the lead
or wing helicopter's sensor view, then procedure Sensorview 0 is called. If none of the above
conditions are met, the current window is for the pilot's view which is attached to one of the world
objects. With the vehicle's new position and rotation, a transformation matrix is formed first by
rotating about the roll, pitch, and yaw axes respectively. Next it is translated to its new position,
and finally, multiplied by the ground matrix which was formed in function Setupdone 0. This
newly formed matrix is saved on the matrix stack and is used when the view is drawn.

4.2.4.1.12 Form transformation matrix for sensor's view: Sensorview 0

Procedure Sensorview 0 is called by function ANA_pilotview. The sensor is attached to either the
lead or wing helicopter. This procedure sets up a transformation matrix on top of the graphics
matrix stack for displaying the sensor view. This is accomplished by performing successive
coordinate transformations. First of all, the location of the sensor is moved from the origin of the
helicopter to the user defined location. Next, it applies rotation successively about roll, pitch and
yaw following by translation to the helicopter's new position. Finally, the current matrix is
multiplied by the ground matrix. The newly formed matrix is saved on the graphics matrix stack
and is used when the sensor view is drawn.

A3I Phase HI Views CSCI Page B- 18

4.2.4.1.13 Form transformation matrix for sensor's view: Observerview 0

Procedure Observerview 0 is called by function ANA_pilotview. An observer's view is used to
monitor the lead helicopter's movement only. This procedure sets up a transformation matrix on
top of the graphics matrix stack for displaying the observer's view. The algorithm to obtain the
transformation matrix is very similar to procedure Sensorview 0. First of all, the location of the
observer is moved from the origin of the helicopter to the observer's location. Next, it applies
rotation about the yaw axis and follows with a translation to the lead helicopter's new position.
Finally, the current matrix is multiplied by the ground matrix. The newly formed matrix is saved
on the graphics matrix stack and is used when the observer's view is drawn.

4.2.4.1.14 Form transformation matrix for fixed camera view: Cameraview 0

Procedure Cameraview 0 is called by function ANA_pilotview. A fixed camera view is used to
monitor the activities inside the gaming area. This procedure sets up a transformation matrix on top
of the graphics matrix stack for displaying the fixed camera view. The algorithm to obtain the
transformation matrix is as following. First, it applies rotation about pitch and yaw axes, followed
by a translation to the fixed camera location. Finally, the current matrix is multiplied by the ground
matrix. The newly formed matrix is saved on the graphics matrix stack and is used when the fixed
camera view is drawn.

4.2.4.1.15 Prepare for animation: ANA_ethernet_ready ()

This procedure is called when the user selects the "Ethemet" command from the animation menu.
The purpose of this procedure is to set the Views software in animation mode. First of all, it
checks whether the set up procedure has been done or not. If no set up procedure is done before, it
signals the user and returns to MultiGen's editing mode. Secondly, it sets up the memory space for
each world object for storing the animation data by calling procedure Initialize_obj 0. Next, it
checks whether standalone mode or communication mode is used. If standalone mode is used, it
opens the data file called "phase2.float" which can be found in the current directory. Finally, the
Views software is turned into animation mode by setting the global variable
"IWM_communication" to true.

4.2.4.1.16 Ready to read animation data: ANA communicate 0
w

When the global variable "IWM_communication" is set to true, then this procedure is called by
function IWM_waitforevent 0 inside the event loop. The purpose of this procedure is directed the
Views software to get the simulation data from the right place. If the animation is in standalone
mode, it calls procedure SIM_read_standalone 0, otherwise it calls procedure Receive__message 0.
Finally, it calls ANA_draw_pictures () to render the simulation on the screen.

4.2.4.1.17 Draw all windows: ANA_draw_pictures ()

Once the Views software receives the simulation data for the current tick, procedure
ANA_draw_pictures 0 is called to draw the scene of the simulation for all active windows.

4.2.4.2 The Flight path module: path.c

4.2.4.2.1 Define the flight path: PAT_define_path 0

A3I PhaseIII ViewsCSCI PageB- 19

This procedure is called by function Anamenu 0 when the user selects the "Define Flight Path"
command from the animation menu. It calls function Openpathfile 0 which prompts the user to
type in a file name for saving the flight path information. Next, it calls function ME_define_path 0
to set up a menu for the user to pick the way points of the flight path.

4.2.4.2.2 Save user defined flight path: PAT_done 0

Once the user finishes defining the flight path and picks the "DONE" button in the editing window,
procedure PAT_done 0 is called. The purpose of this procedure is to terminate the inputting
process and save all input data into a ASCII file whose name is specified by the user. Each line in
this file stores the information for one way point which consists of station number, X, Y, and Z
locations, altitude, air speed, and heading.

4.2.4.2.3 Locate the terrain surface: PAT_trackplane 0

This function is called by function MC_mouse2vtx 0 in file module mgiconst.c. The main purpose
of this function is to find the plane equation of a terrain surface when the user places the cursor on
top of a terrain surface and clicks the mouse button. The elevation at that particular location can be
calculated with the provided plane equation.

4.2.4.2.4 Fly Through the flight path: PAT_fly_path 0

This procedure is called when the user selects the "Fly Thru Path" command. It prompts for the
flight path data file name, the flying distance between points, and the elevation's scaling factor.
Next, it calls function Followpath 0 to verify the user's input and then calls function Flightstart 0
to start the flying through command.

4.2.4.2.5 Draw the flight path: PAT_draw_flight_path 0

This procedure is called when the user selects the "Draw Flight Path" command. It checks whether
a flight path has been drawn before, if it has, the existing flight path is deleted from the display list
and a new flight path is redrawn on the screen.

4.2.4.3 Read simulation data module: simdata.c

4.2.4.3.1 Read data from a standalone file: SIM read standalone 0
m

This procedure is called only when the simulation is in standalone mode. The purpose of this
procedure is to read the simulation messages from the data file called "phase2.float" and assign
those messages to world object's data structure. The content of a complete data structure of the
world objects is listed in Appendix. This procedure also assigns lead helicopter's dynamic values
to the cockpit instruments if they are defined by the user.

4.2.4.3.2 Read data from pipe file: SIM_mess2data 0

This procedure is called only when the simulation is in integrated communication mode. The
purpose of this procedure is very similar to procedure SIM_read_standalone 0 except it reads in
simulation messages from a pipe file called "a3il000".

4.2.4.3.3 Terrain location adjustment: Hi_res_djustment 0

A3I PhaseHI ViewsCSCI PageB- 20

The Iris Graphics Engine is limited to accepting an integer value no larger than 24-bit. The physical
location of the A3I gaming area is 10 miles away from the graphics origin, therefore, after
converting the coordinates of the terrain surfaces into the internal format of MultiGen in high
resolution mode, most of the values are bigger than 24-bits. In order to circumvent this problem,
the origin of the gaming area in the graphics world is moved from (64741.0, 65620.0, 0.0) to
(0.0, 0.0, 0.0) and procedure Hi._res_djustment 0 is used to make an appropriate adjustment after
checking the value of COM_internal_resol.

Hi_res_djustment (zerox, zeroy)
float *zerox, zeroy; /* adjusting values in x and y directions */

If the value of COM_internal_resol is greater than 32, which is the normal internal resolution for
MultiGen, then the returned values are 64741.0 and 65620.0 for x and y directions respectively.
Otherwise, zeros are returned.

4.2.5 DMA Kernel Subsystem (TER)

The DMA Kernel subsystem is an option developed by the A3I staff as an add-on to MultiGen and
later on modified by Software Systems to make this subsystem more user friendly. The main
purpose of this option is to extract elevation data from standard level 1 DMA DTED distribution
tapes and convert into polygonal surfaces. The generated terrain surface is saved into a data base
file for later editing.

The DMA Kernel subsystem is divided into two parts -

(i)

(ii)

A standalone preprocessor is used to read elevation data off the distribution tape and save into
a data file called post file. The name of this program is called "readdma" which is resided in
the directory called "]fl]mg3.0]Mg/Dma" in orca (Iris 2500T).
The second part is built into the MultiGen system. The post file saved in the first part
becomes the input file for this part which converts the elevation data into polygonal surfaces.
The source code of this part is organized in three separately compilable modules. Externally
callable procedures in this subsystem are preceded by a three letter module prefix and an
underscore. Table 4-4 shows the modules that contain the source code for the DMA kernel.

The source code of the following file can be found in orca (Iris 2500T) under the directory of
"/fl/mg3.0/Mg/Dma".

Module Name Prefix Purp0s¢

terrain.c TER_
terdma.c TP_
terpoly.c TPOL_

Table 4-4. DMA Kernel Source Modules

DMA user interface module

Read post file module
Generate terrain polygons module

4.2.5.1 The standalone preprocessor module: readdma.c

This program is used to extract elevation data from DMA DTED distribution tapes or a tape image
disk file. A tape image disk file is a file which has identical format with a given distribution tape.
The detailed format of the distribution tape is described in Defense Mapping Agency (DMA),
Product Specifications for Digital Terrain Elevation Data (DTED), PS/ICD/200, PS/ICF/200,

A3I Phase HI Views CSCI Page B. 21

Second Edition, St. Louis, Missouri, April, 1986. The main goal of this program is to follow the
format of the tape and extract the required data.

The main program controls the flow of the whole program. It checks the command line input to see
whether the input is coming from a distribution tape or a tape image file. If the second argument in
the command line is "file", then the file name of the DMA's DTED tape image will be asked.
Otherwise, it is assumed that a distribution tape is already mounted on the tape drive. Figure 4
shows a flow chart of this program. Additional information on each routine can be found in the
documentation prepared by Software Systems. A post f'de will be saved in the disk when the
program is finished. This post file becomes the input file to the second part of the DTED
conversion.

A3I Phase III Views CSCI Page B- 22

main

Verify the tape

No

Exit the program

No

-N
Yes Enter file name |

from tape Read_tape_image 0 J

Yes

Yes

,/

Read headerDo_header 0

Jser input to

specify the cells
Usr_input 0

Loop thru all cell to
get all the data

Read elevation data

and write data to file

Read_cell 0

Figure 4 A flow chart for program readdma.c

A3I Phase HI Views CSCI Page B- 23

4.2.5.2 Converting elevation data into polygonal surfaces

4.2.5.2.1 Read post file module: terdma.c

The procedure TP_getfile 0 in this module is used to check and read user specified post file. The
format of a post file is described as follows:

Record type 1 : size = 128 bytes
Contents : file header block which is def'med by the following structure -

typedef struct ss_stdhdr {
long len;
char id [4];
char part [4];
char rev [8];
char create [26];
char update [26];

/* standard file header block (128) */
/* size of header block in byte */
/* file identification code "SSYS" */

/* software part no. */
/* software revision no. */
/* creation date/time */
/* last update date/time */

char spare [52]; /* spare */
} ss_stdhdr, *ss_stdhdrpt;

Record type 2 : size = 4 bytes (binary)
Contents : total number of cells in this file. (floating point)

Record type 3 : size = 2 bytes (binary)
Contents : minimum elevation in meters. (integer)

Record type 4: size = 2 bytes (binary)
Contents : maximum elevation in meters. (integer)

Record type 5 : size = 40 bytes (binary)
Contents : minimum latitude value. (floating point)
maximum latitude value. (floating point)

minimum longitude value. (floating point)
maximum longitude value. (floating point)
latitude data interval in second. (floating point)
longitude data interval in second. (floating point)
number of latitude points. (floating point)
number of longitude points. (floating point)
distance between longitude points in feet. (floating point)
distance between latitude points in feet. (floating point)

Record type 6 : size = number of latitude points * 2 bytes (binary)
Contents : elevation data in meters. (integer)

Repeat this record for X times where X is equal to number of longitude
points in one cell.

Note: Repeat record types 5 and 6 for N times where N is equal to total number of cells in
this post file.

Once the user selects a portion of area from the origin post file and desires to save it, procedure
TP_newfile 0 is called to save the selected area into a post file format. Saving terrain post data for

A3I Phase HI Views CSCI Page B- 24

smaller areas of interest within the original gaming area guarantees that the area of work will be
exactly the same in subsequent modeling sessions.

4.2.5.2.2 DMA user interface module: terrain.c

The procedures in this file are used to handle user interaction. It includes putting the DMA pull-
down menu into MultiGen's pull-down menu system by procedure TER_init 0; opening post files
by procedure Open_terfile 0; drawing grid maps and color filled contour maps on the screen by
procedures Draw_grid 0, Redraw_gridw 0, Do__contours 0, and Contours 0; putting up control
windows for the user to redefine the parameters for data conversion by procedure Control_window
0; and directing user selection to the appropriate routine by procedure Termenu 0. The detailed
internal structure of this module can be found in the documentation prepared by Software Systems.

4.2.5.2.3 Generate terrain polygons module: terpoly.c

The procedures in this file are used to generate the polygonal surfaces from the elevation data.
Procedure TPOL_form_terrain_poly 0 is the control routine for forming the terrain surfaces. It is
called when the user selects the "Polygons" command in the grid window. The whole terrain
surface is divided into several groups of objects. Polygonal surfaces are formed by comparing the
maximum elevation among four comer posts against the maximum and minimum elevation among
all interior posts. If the difference between these two elevations is within a user defined tolerance, a
single polygonal surface is formed providing that all four comers are on a same plane, otherwise 2
triangular surfaces are formed. If the difference is larger the tolerance, four triangular surfaces are
formed by using four comer posts and the interior post of either maximum or minimum elevation.
Procedures Subdivide 0, Form_face_mat 0, Fill_array 0, and Form_face 0 are used to form the
surfaces and to insert into MultiGen intemai data format (ifmt) for display. The color of the
polygonal surface is assigned according to the maximum elevation within the surface and color is
assigned to the vertex according to its elevation. The detailed intemai structure of this module can
be found in the documentation prepared by Software Systems.

5.0 NOTES

5.1 Miscellaneous

5.2 Limitations

The limitations for using the Animation option are:

i°

ii.

All world objects have to be in a single FLIGHT database file. Each world object should be
defined by only one ID in the Group level. Therefore, an object can be created individually
and then this model is copied into the animation database file using the Group mode.

When the Cockpit Display Editor is included, only the instruments and gauges on the lead
helicopter's cockpit panels can be animated. There is no provisions at this time to handle the
animation of cockpit instruments for wing helicopter.

iii. The maximum number of world objects can be handled at one time is 150 which includes the
lead helicopter's cockpit instruments.

A3I Phase HI Views CSCI Page B- 25

5.3 Future Directions

Integrating Views software into MultiGen provides a good set of tools for the user/designer to
create geometric models of world objects and observe the simulation in different viewing
perspectives. Basically, MultiGen is a modeling system for creating and editing of three
dimensional graphics data bases, while Views provides tools for running and monitoring a
simulation. Therefore, they are totally different in nature. After integrating them together, there is
no performance changes in the editing part. However, the performance of the animation part is
affected due to extra checkings in drawing mode which is designed for the editing part. In order to
speed up the rendering time for each frame during simulation, the animation part should have its
own drawing routines to by-pass all those unnecessary checkings.

Secondly, there are still no tools to extract cultural information from DMA's Digital Feature
Analysis Data (DFAD) and overlay them on the DTED. Without any cultural information,
important aspects of the world environment cannot be displayed.

6.0 USERS GUIDE

6.1 Introduction

This section describes how to use Views software/MultiGen and its installation procedures.

6.2 Related Documentation

Software Systems MultiGen - Modeller's Guide, Release 3.0, Software Systems, San
Jose, September 1988.

6.3 Overview of Purpose and Functions

The Views software/MultiGen is a system for creating and editing three dimensional graphics data
bases and providing tools for viewing the simulation sequence. The whole system is mouse
oriented and visually intuitive. The program is controlled by pointing at symbolic graphics and
menus on the graphics workstation display. This type of user interface was originally developed by
The Xerox Palo Alto Research Center (PARC) and has been popularized by the Apple Macintosh
computer.

6.4 Installation

6.4.1 Installing MultiGen Software Environment

The following procedure shows how to install the MultiGen Software environment:

i. Put MultiGen release tape in the tape drive.

ii. Change directory to the destination'directory that will be the root directory of the entire
MultiGen environment. In our case, directory "/fl/mg3.0" is the root directory for MultiGen
in orca.

A3I Phase HI Views CSCI Page B- 26

°..

III. Type "tar xvo" and wait for down loading of the f'des. The correct directory structure will be
created. Figure 5 shows the file structure for development of MultiGen/Views.

/fl/mg3.0
I

+ + +

/Im /Mg /a3i
1

+ + + + +

I 1 I I
/Dma /Fit /Ker /bin /usr

1

I

/mg

Figure 5 File structure for MultiGen

"Im" contains the files that make up the Interface Manager.
"a3i" contains the files that make up the Animation and CDE options.
"Dma" contains the files that make up the DMA terrain option.
"Ker" contains files that belong to the MultiGen Kernel.

All of above directories contain Makefiles to compile the source files, source files, include
files and binaries. They also contain miscellaneous run-time menu and message resource
files.

"Fit" contains the files that make up the Flight Data Base Logic and the main Makefile to
compile and create the MultiGen/Views executable file. The content of this Makefile is
showed in the Appendix A.

"bin" contains shell scripts needed for installing MultiGen, miscellaneous utilities, plus all
".tip" help files. It is recommended to put all MultiGen maintenance related utilities in this
directory and set the path to it.

"mg" contains the run-time menu and message resource files, and the MultiGen executable
file.

6.5 Start-up and Termination

All the graphical output from MultiGen/Views software are displayed on the system console of Iris
2500T. All FLIGHT database files are created by using MultiGen. The following instructions are
used to create a new FLIGHT database file -

i° Type "cd/fl/mg3.0/Mg/usr/mg", then press return key. It will bring to the directory where
the MuhiGen executable file is located.

ii. Type "mgflt.good", then press return key which tells the operating to execute the MuhiGen.

A3I Phase III Views CSCI Page B- 27

...

lll. As soon as the desk top of MultiGen is set up, then the user has to choose the "new file"
option under the "I/O" pull-down menu. From here on, the user can follow the MultiGen
Modeller's Guide to create the model. Once the model is created, then the user has to select

the "write file" option under the "I/O" pull-down menu to save the model into a disk file for
future editing. To leave the program, drag the cursor down to "quit", then move the cursor to
the right and select "conf'trm" under I/O menu.

The following instructions are used to execute MultiGen with an existing FLIGHT database file -

io Type "cd/fl/mg3.0/Mg/usr/mg", then press return key which will bring to the directory
where the MultiGen executable file is located.

ii. Type "mgflt.good filename", then press return which tells the operating to execute the
MultiGen with the given file name called "filename".

6.6 Functions and Their operation

6.6.1 Setting up for Phase III demonstration

The Views software is executed on the system console of Iris 2500T. This is a standalone
demonstration, i.e., it gets the simulation data from a data file called "phase2.float" which is
resided in the same directory as the binary code of the View software. The following is a summary
of step by step procedures for setting up the Views software for A3I demonstration.

Part 1 - The A3I World - Setup Procedures:
1. Login orca (Iris 2500T) as usual.
2. Type "cd/fl/mg3.0/Mg/usr/mg", then press return.
3. Type "mgflt.good 768/ah64.flt", then press return.
4. After MultiGen is running, re-size the database window to about 4" square

and relocate it to the upper fight comer of the screen. Pull down the
"ANIMATION" menu bar and select the "Set Up" command.

5. Type in the "Set Up" filename which is called "768ani_flt3.doc" and press
return. Next, a window will appear on the screen displaying the name and
graphics ID of each object, pick the "DONE" button to terminate this input
sequence if all of them are correct, otherwise, make the necessary changes
before picking the "DONE" button.

6. A "World View" window is opened up at top fight comer of the screen. Pull
down the shade to display all control dials and then turn on the orthogonal
display option. The user may need to resize the "World View" window in
order to turn on the orthogonal display option.

7. Pull down the "ANIMATION" menu and select the "Fix Camera" command
to define the observer's view inside the gaming area.

8. The fix camera location is specified by defining the camera location and its
initial line of sight direction. Once those two information are defined, a
camera window is popped up to display the view. Relocate the camera
window to the upper left comer of the screen.

9. Relocate the "World View" window to the lower left comer and make

certain that windows are not overlapped.
10. During demos, select "Ethernet", which can be found in the "ANIMATION"

menu, to start the simulation.

A3I Phase III Views CSCI Page B- 28

Part 2 - Dynamics Analysis - Setup Procedures:
1. Once the Part I is over, move the "World View" window to upper right

corner and cover up the database window.
2. Pull down the "ANIMATION" menu and select the "Moving Camera"

command.

3. Select the "Wing Helicopter View" from the pop up menu. Next, a window
for wing helicopter view is opened up on the bottom right corner of the
screen.

4. Repeat Step 2 and 3, instead of selecting "Wing Helicopter View", select
"Lead Helicopter View". Then the window for displaying lead helicopter
view is opened up on the bottom left comer of the screen.

5. Pull down the "CDE" menu and select "Load Link File" command, and then
type in the link file name called "radar_alt++.lnk".

6. Again, pull down the "CDE" menu and select "animate init" command to
initialize the cockpit instruments. As soon as this command is done, press
"m" two times for displaying the full detail of the whole cockpit.

7. Select "Ethernet", which can be found in the "ANIMATION" menu, to start
the simulation again. The console shows the whole simulation in four
different viewing windows at the same time - world view window,
observer's view window, lead helicopter's pilot view, and wing helicopter's
view.

8. As an option, similar set up can be done in manta (Iris 3120) to show the
lead helicopter's pilot view using the whole screen.
a. Login manta as usual.
b. Type "cd/cl/tmh/mg3.0/Mg/usr/mg", then press return.
c. Type "mg768 768/ah64.flt", then press return.
d. Pull down the "ANIMATION" menu bar and select the "Set Up"

command; the name of the set up file is called "768 ani fit.doe".
e. Close the "World View" window and then select the "Lead Helicopter

View"; the name of the link file for the cockpit instruments is called
"radar_alt.lnk".

f. Pull down the "ANIMATION" menu and select the "Full Screen"
command, and then select "Ethemet" command to start the simulation.

6.6.2 Creating model

In general, a geometric model can be created by using MultiGen's modeling capabilities. Please
consult Software Systems MultiGen, Modeller's Guide (September, 1988) on how to create and
edit 3D models. A special feature on creating terrain surface from elevation data of DMA DTED is
added for convenience which will be described in detail in section 6.6.4.

6.6.3 The Animation menu

Set Up brings up a temporary window and asks for the set-up file name. A set-up file contains the
identification number (group ID) for all the animated objects. Information of the set-up file is
echoed back in a separated window. Click "DONE" button if the user satisfies with all the
information. Next, a window for the world view is displayed on the top right corner of the screen.

World View is used to re-opened the world view window if this window is closed during the
simulation. This window presents the god's eye view of the whole simulation. Changing eye point

A3I Phase HI Views CSCI Page B- 29

location, zooming and panning are allowed at any time and their operations follow the MultiGen
conventions.

Moving Camera is used to specify a camera location of a window to display what that camera
would see at that particular location. The user has an option to select a camera location from a list
of 11 moving camera locations. The list of moving camera locations is p.opped up on the screen
when this command is selected. Usually, the actual location for the mowng camera view is at the
graphics origin of the animated object, such as the helicopter, truck, etc. except the sensor's view
and the lead helicopter observer's view. The camera location of sensor's view and lead helicopter
observer's view axe def'med by user using the command "Def Sensor Loc." and "Def Observer
Loc.", respectively. No special operations like zooming or panning are allowed but the window
itself can be relocated to some other position on the screen by the user.

Fix Camera is used to specify a camera location inside the gaming area for monitoring the
progress of the simulation. The user can specify up to 10 stationary camera locations inside the
gaming area. The fix camera window will not be opened until the camera location is defined. The
fix camera location is specified by defining the camera location inside the gaming area and its initial
line of sight direction. A camera window pops up on the screen to display the view after defining
those two points. The user can use the roll dial on the view control area to change the hne of sight
direction.

Head Up Display is a toggle switch to turn the Head-Up Display on or off. The Head-Up
Display is displayed on the top of the pilot's view and within the same window. This display
simulates what the pilot would see if he puts on the night vision goggles. It contains the
symbology of helicopter's AGL altitude, compass direction, torque, airspeed, velocity vector and a
30 by 40 field of view area.

Ethernet is used to signal the beginning of the simulation. This command can only be selected
after the completion of the "Set Up" command. "Ethernet" command puts the Views software in
communication mode with a stand-alone file called "phase2.float" which contains all the
information as specified in the file called "message.h" which is listed in Appendix D.

Stop Animation is used to stop the animation.

Resume Animation is used to resume the animation if it is stopped previously using the "Stop
Animation" command.

Define Flight Path is used to plan a route for a helicopter mission. The route is picked by
placing the cursor at the desired locations on a gaming area and clicking the mouse button. At each
selected location, you are prompted to enter the altitude above the terrain surface, the airspeed, and
the heading of the helicopter. After completing the selection of the route, the Views software saves
all the information into a user specified file for playing back the mission using the command "Fly
Thru Path". A terrain surface has to be displayed on the screen first before selecting this command.
In order to get a better accuracy for picking stations along the route, choose the display option of
orthographic view instead of perspective view. This is done by turning on the "ortho flag" located
in the view control area in the same window. When the "Edit Control Window" appears at the
upper left comer of the screen saying "Pick a point", the user can move the mouse to the desired
location and click the left button. A solid line connecting all stations is displayed on the screen to
indicated the route. The user can reject the last picked station by clicking the "UNDO" box in "Edit
Control Window". Click the "DONE" box to terminate the "Define Flight Path" command.

A3I Phase HI Views CSCI Page B- 30

Fly Thru Path is used to animate the mission specified by "Define Flight Path". This command
allows the user to see the surrounding area along the selected route through the pilot's view
window. The "Set Up" command needs to be selected before submitting this command. The data
base file must contain the same terrain surface and a helicopter model. The user can specify the
flying distance between frames. Specifying equal flying distance makes the flight (animation) a lot
smoother. A scaling factor can be specified if the elevation information between the flight path data
file and the terrain model are not in the same scale. Select "DONE" button if all values are set.

Freeze Frame is used to halt the animation temporarily and display the current frame on the
screen. Once this command is selected, the Views software stops receiving data. The animation can
be resumed again by pressing the left mouse button.

Single Tick is a toggle switch which can put the animation into either frame by frame mode or
continuous mode. When the animation begins, the Views software displays the graphics
continuously without interruption. By selecting this command, the Views software displays one
frame of information at a time and the user has to press the left mouse button in order to get the
next frame.

Restr, Pilot View is a toggle switch which can turn the restricted pilot's view on or off. The
restricted pilot's view is a viewing area looking out through the Head-Up Display. Those areas
which are outside the restricted pilot's view are blocked away from the pilot's eye. Normally, the
area which pilot can see with the night vision goggles is about 30 degrees vertical field of view and
40 degrees horizontal field of view.

Def Pilot's FOV is used to redefine the viewing size of the restricted pilot's view. A temporary
window pops up on the screen showing the size of the current restricted pilot viewing area. The
user can type in the new values to redefine the field of view in both horizontally and vertically.
Select the "DONE" button to complete this command.

Def Sensor Lo¢. is used to define the location of the sensor relative to the pilot's eye location.
The sensor location is defined in terms of distance (feet) horizontally and vertically away from the
pilot's eye. Select the "DONE" button to complete this command.

Full Screen is used to display the current window using the whole screen of the console. It acts
like a toggle switch to display the window in either full screen or the original size.

4D to Iris is used to send animation data from coral (Iris 4D) to manta (Iris 3120). By
selecting this command on both machines, the animation data will be sent from coral through the
network to manta, then same scene but different viewing perspective of the simulation can be
displayed on two screens simultaneously.

Show Timing is used to display the time required to render a complete simulation tick. The time
is displayed on the top right comer of the screen.

Control Display is to display the flight control devices of the lead helicopter. Once this
command is selected, three windows pop up on the screen to display the symbolic representation
of cyclic control device, collective control device and pedal respectively. These three window can
be gone away by selecting this command again.

Def Observer Loc is used to define the location of the observer which is relative to the lead
helicopter. The location is defined by entering the vertical distance, horizontal distance from the

A3I Phase HI Views CSCI Page B- 31

tail, and the horizontal distance from the side of the lead helicopter, elect the "DONE" button to
complete this command.

Draw Flight Path is used to display the flight path which is defined by using the "Define Flight
Path" command. Each station is represented by a blue square at that location and stations are
connected together by a solid line.

Change Way point is used to redefine the location of the way point during the execution of the
"Fly Thru Path". One or more way point locations can be changed at one time. The procedure is
very similar to "Define Flight Path" command. Once the modification is done, the "Fly Thru Path"
command resumes and follows the modified flight path.

HUD is a toggle switch to turn on or off the display of a head-up display which is located on the
top of the cockpit instruments panel. This display contains the symbology of helicopter's AGL
altitude, compass direction, torque, airspeed, and velocity vector.

6.6.4 The Terrain menu

The Terrain menu is used to convert the raw elevation data from Defense Mapping Agency (DMA)
Digital Terrain Elevation Data (DTED) into a 3D graphics polygonal representation of terrain
surfaces. A preprocessing standalone program called "readdma" must be run before selecting any
commands from the Terrain menu. The program "readdma" is used to extract elevation data from a
9-track distribution tape (DTED tape) and save the data into a binary data disk file. When this
program is executed, it prompts for number of cells on this tape and the cell number(s) to be
selected. The label of DMA DTED tape should provide enough information regarding the cell
arrangement for user to do the selection. The data are then save into a file whose name is specified
by the user and this file is referred as Post file by MultiGen. The "readdma" program is resided in
the directory called "/fl/mg3.0/Mg/Dma". For further information on how to use this program and
the Terrain menu, please consult Software Systems MultiGen, DMA Terrain Conversion Option
User's Guide, (July, 1988).

In case the Iris workstation system does not have a half-inch tape drive, then a tape image file can
be created by using a remote system with the half-inch tape drive. First of all, each record on the
tape is extracted out and save in a temporary disk file. After extracting all data record for the same
cell, then these disk files are concatenated together to form a tape image file. This file is then copied
into the Iris system. When running "readdma" program, the user has to type in "readdma file"
which signifies that a tape image file is used. The contents of those two script files are shown in
the Appendices B and C.

7.0 APPENDICES

7.1 Glossary, Abbreviations

A3I
DMA
DTED
DFAD
CDE
FOV
HUD

Army-NASA Aircrew/Aircraft Integration
Defense Mapping Agency
Digital Terrain Elevation Data
Digital Feature Analysis Data
Cockpit Display Editor
Field of view

Head Up Display

A3I Phase HI Views CSCI Page B- 32

ofmt
ifmt

original format for the current selected data base file
internal format of MultiGen kernel

A3I Phase Ill Views Software Page BA1

Appendix A The content of makefile for creating MultiGen executable

#make file options: -DOPT_DMA

IMINC = ../.Jim
KERINC -- ../Ker
DMAINC = ../Dma
A31]NC =../../a3i

OBJS = fltdbl.o fhlink.o fltcolor.o fltio.o fltid.o fltpage.o

TRDOBJS = flttrade.o

OPT_TRD_OBJS = fltlink.o flttrade.o
OPT_DMA_OBJS = fhlink.o fltdbl.o

MGTARGET = mgflt

$(OBJS) $(TRDOBJS): $(IMINC)/imstrucs.h $(KERINC)/mgfmt.h fltfmt.h
$(TRDOBJS): $(TRDINC)/mgtrade.h

touchtrd:
rm -rf $(OPT_TRD_OBJS)

touchdma:
rm -rf $(OPT_DMA_OBJS)

clean:
rm -rf *.o
cd $(IMINC); rm -rf *.o
cd $(DMAINC); rm -rf *.o
cd $(KERINC); rm -rf *.o
cd $(A3IINC); rm -rf *.o

.C.O:

$(CC) -I$(IMINC) -I$(KERINC)
$(DFLAGS) -c $<

-I$(DMAINC)-I$(A3IINC) $(CFLAGS)

$(MGTARGET): $(IMINC)/im*.o $(KERINC)/mg*.o $(OBJS) $(A3IINC)/*.o
$(DMAINC)/ter*.o

cc $(IMINC)/im*.o $(KERINC)/mg*.o $(A3IINC)/*.o $(DMAINC)/ter*.o \
$(OBJS) $(LDFLAGS) -Zg -Zf $(CFLAGS) -o $(MGTARGET)

echo

an:

cd $(IMINC); make im DFLAGS=" -DOPT_DMA"
cd $(DMAINC); make dma DFLAGS=" -DOPT_DMA"
cd $(KERINC); make ker DFLAGS=" -DOPT_DMA"
cd $(A3IINC); make a3i DFLAGS=" -DOPT_DMA"
make $(MGTARGET) CFLAGS="-O -lbsd -ldbm" DFLAGS="
mv mgflt/fl/mg3.0/Mg/usr/mg/mgflt

-DOWDY"

A3I Phase IlI Views Software Page BA2

it:

alldbx:

make $(MGTARGET) DFLAGS=" -DOPT_DMA"

cd $(IMINC); make im CFLAGS=-g DFLAGS=" -DOPT_DMA"
cd $(DMAINC); make dma CFLAGS=-g DFLAGS=" -DOPT_DMA"
cd $(KERINC); make ker CFLAGS=-g DFLAGS=" -DOPT_DMA"
cd $(A3IINC); make a3i CFLAGS=-g DFLAGS=" -DOPT_DMA"
make $(MGTARGET) CFLAGS="-g-lbsd-ldbm" DFLAGS=" -DOPT_DMA"
mv mgflt/fl/mg3.0/Mg/usr/mg/mgflt

Note: The above makefile is made for the version which is running in IRIS 2500T. Hardware
differences between Silicon Graphics 3000, and 4D/GT workstations necessitate slightly different
drawing mode. To allow for these and other differences within only one set of source listings,
conditional compiles (ifdefs) are employed. A conditional compile identifiers is added to the
makefile. The following statement shows the required change :

Replace DFLAGS=" -DOPT_DMA" by DFLAGS=" -DOPT_DMA -DOPT_GT"

A3I Phase IlI Views Software Page BB1

Appendix B The content of a script file for extracting data records from DMA's
DTED distribution tape

is used to read DMA tapes - Folda Gap
using/dev/rmt12 -- 1600 bpi, no rewind
rewind tape
mt -f/dev/rmt 12 rewind
read VOL

dd if=/dev/rmtl2 of=VOL bs=80 count=l
cell #1

read 1st gruop, HDR and UHL
dd if=/dev/rmtl2 of=HDR1 bs=80 count=l
dd if=/dev/rmtl2 of=UHL1 bs=80 count=l
dd if=/dev/rmtl2 of=/dev/null bs=l count=l # skip EOF mark
read 2st gruop, DSI and ACC
dd if=/dev/rmtl2 of=DSI1 bs=648 count=l
dd if=/dev/rmtl2 of=ACC1 bs=2700 count=l
read data (1 files, 1201 records, 2414 bytes/record) (3 X 3 sec)
read data (1 files, 601 records, 2414 bytes/record) (3 X 6 sec)
dd if=/dev/rmt 12 of=celll.data bs=2414 count=601
dd if=/dev/rmtl2 of=/dev/null bs=l count=l # skip EOF mark
read 3rd gruop, EOF1 and UTL1
dd if=/dev/rmtl2 of=EOF1 bs=80 count=l
dd if=/dev/rmtl2 of=UTL1 bs=80 count=l
skip EOF mark
dd if=/dev/rmtl2 of=/dev/null bs=l count=l

A3I Phase IlI Views Software Page BC1

Appendix C The content of a script file for concatentate the disk files into a
single tape image disk file

set -x
cat VOL > dma.data 1
cat HDR1 >> dma.datal
cat UHL1 >> dma.datal
cat eof.bin >> dma.datal
cat DSI1 >> dma.datal
cat ACC1 >> dma.datal
cat celll.data >> dma.datal
cat eof.bin >> dma.datal
cat EOF1 >> dma.datal
cat UTL1 >> dma.datal

A3I Phase lIl Views Software Page BDI

Appendix D message.h

typedef struct [
long unused;
int tick_no;

float helil_x, helil_y, helil_z;
float helil_yaw, helil_pitch, helil_roll;
float hell 1_speed;
float helil_altitude;
float helil_wectorx, helil vvectory, helil_vvectorz;
float heli l_earth_vz;
float heli 1_torque;
float heli 1_explosion;

float heli2_x, heli2_y, heli2_z;
float heli2_yaw, hell2 pitch, heli2._roll;
float heli2_speed;
float heli2 altitude;
float heli2_vvectorx, heli2_vvectory, heli2_vvectorz;
float hell2 earth_vz;
float heli2, torque;
float heli2_explosion;

float truckl_x, truckl_y, truckl_z;
float truckl_yaw;
float truckl_explosion;

float truck2 x, truck2_y, truck2_z;
float truck2_.yaw;
float truck2_explosion;

float truck3 x, truck3_y, truck3_z;
float truck3_..yaw;
float truck3_explosion;

float truck4_x, truck4_y, truck4_z;
float truck4_yaw;
float truck4_explosion;

float truck5_x, truck5_y, truck5_z;
float truck5__yaw;
float truck5_explosion;

float truck6_x, u'uck6_y, truck6 z;

float truck6_yaw;
float truck6_explosion;

float missilel_x, missilel_y, missilel_z;
float missile l_yaw, missile l_pitch;

A3I Phase lII Views Software Page BD2

float missile l_explosion;

float
float
float

rnissile2_x, missile2__y, missile2_z;
missile2_yaw, missile2__pitch;
missile2_explosion;

float
float
float

missile3_x, missile3_y, missile3_z;
missile3_yaw, missile3_pitch;
missile3_explosion;

float
float
float

missile4_x, missile4__y, missile4_z;
missile4_yaw, missile4 pitch;
missile4_explosion;

float missile5_x, missile5 y, missile5_z;
float missile5_yaw, missile5_pitch;
float missile5_explosion;

float missile6._x, missile6_y, missile6__z;
float missile6_yaw, missile6 pitch;
float missile6_explosion;

float missile7_x, missile7_y, missile7_z;
float missile7_yaw, missile7_pitch;
float missile7.._explosion;

float missile8_x, missile8_y, missile8_z;
float missile8_yaw, missile8_pitch;
float missile8__explosion;

float missile9_x, missile9_y, missile9_z;
float missile9_yaw, missile9_pitch;
float missile9_explosion;

} animate_message;

A3I Phase IlI Views Software Page BE1

Appendix E animate.menu

ANIMATION

Set Up
World View

Moving View
Fix View

-Head Up Display
Ethemet
Stop Animation
Resume animation
-Define Flight Path
Fly Thru Path
-Freeze Frame

Single Tick
-Restr. Pilot View
Define Pilot's FOV
Def Sensor Loc.

-Open Cockpit File
Full Screen
-4D to IRIS
-Show Timing
-Control Display
Def Observer l.x_c.

Draw Flight Path
Change Way Point
HUD

A3I Phase III Views Software Page BF1

Appendix F animate.msg

7001:

No models exist ! Animation set up aborted !
/
7002:

No models exist ! Cannot create any views !
/
7003: Animation Set Up

Object Name No. Object Name

< > < > < >

< > < > < > < >

< > < > < > < >

< > < > < > < >

< > < > < > < >

< > < > < > < >

< > < > < > < >

< > < > < > < >

< > < > < > < >

/
7004:

Invalid ID in use.
/
7005:

</ DONE >

A3I Phase III Views Software Page BF2

Needs to do set up fin'st.
/
7006:

Enter set up filename : <
/
7007: Restricted Pilot View's Field of View

>

Vertical Field of View : < >

Horizontal Field of View : < >

</ DONE >
/
7008: Location of The Sensor from the Pilot's Eye

Vertical Distance : < >

Horizontal Distance : < >

/
7009:

</ DONE >

Cannot find the standalone data file, communication abort [
/
7010: Location of The Observer from the Lead Helicopter

Vertical Distance : < >

Horizontal Distance from the tail: < >

Horizontal Distance from the side: < >

</ DONE >
/
7100: Moving Camera Location

A3I Phase IIl Views Software Page BF3

<> At Lead Helicopter Cockpit
<> At Wing Helicopter Cockpit
<> At Jeep
<> At Missile__Launcher_l
<> At Tank
<> At Truck_l
<> At Truck_2
<> At Missile_Launcher_2
<> At Lead Helicopter Sensor Location
<> At Wing Helicopter Sensor Location
<> At the tail of the Lead Helicopter

</OK>
/
7102: Stationary Camera Location

<> Camera No. 1
<> Camera No. 2
<> Camera No. 3
<> Camera No. 4
<> Camera No. 5
<> Camera No. 6
<> Camera No. 7
<> Camera No. 8
<> Camera No. 9
<> Camera No. 10

</Define >
/
7110:
Enter Camera
Location

/
7112:
Enter Camera
Direction
/
7114:

</ Open >

Needs to define the location of the camera first !
/
8001:

Enter flight path data file name : <
/
8002:

>

A3I Phase III Views

Pick a point
/
8005: Flying through defined flight path

Software Page BF4

Enter flight path data file name : < >

Flying distance between each frame : < > ft.

Scale factor for the terrain's elevation : < >

/
8006:

</ DONE >

Open file failure.
/
8007:

Cannot draw the flight path. No flight path defined yet.
/
8008: Flight path definition:

Altitude above terrain : < > ft.

Air speed : < > knots

Helicopter heading : < > degrees

</

/
900hCalculator

OK >

Enter your mathematical expression :

< >

The result for the above expression : < >

A3I Phase III Views Software Page BF5

Values for the variables :

U.'< >

V:< >

W:< >

X:< >

Y:< >

Z:< >

</ OK >

/
9002:

Enter FLIGHT database filename : <
/

>

Annex C

Army-NASA Aircrew/Aircraft Integration Program

A3I

Software Detailed Design Document:
Phase III Cockpit Design Editor

prepared by

Teh-Ming I-!..sieh

December 1988

Table of Contents

1.0 INTRODUCTION .. C-1
1.1 Identification .. C-1
1.2 Scope ... C-1

1.3 Purpose .. C-1
2.0 RELATED DOCUMENTATION .. C-3

2.1 Applicable Documents ... C-3
2.2 Information Documents ... C-3

3.0 REQUIREMENTS AND DESIGN APPROACH .. C-3
3.1 Requirements and Rationale .. C-3
3.2 Hardware Environment ... C-4
3.3 Software Environment .. C-4

4.0 DETAILED DESIGN DESCRIPTION ... C-4

4.1 Organization .. C-4
4.2 Unit Detailed Design ... C-6

4.2.1 Interface Manager Subsystem ... C-6
4.2.2 MultiGen Kernel Subsystem .. C-6

4.2.2.1 Data Structure : mgfmt.h ... C-7
4.2.2.2 Source Module : mgcom.c ... C-8
4.2.2.3 Source Module : mgdesk.c .. C-8

4.2.2.3.1 Constants and Variables C-8
4.2.2.3.2 Inches/FeetBubble Control : Enterfeet0 C-8
4.2.2.3.3 MG/A3I Bubble Control : Entermg0 C-9

4.2.2.4 Source Module : mgicnstr.c ... C-9
4.2.2.5 Source Module : mgiconst.c ... C-9
4.2.2.6 Source Module : mgicre.c .. C-9
4.2.2.7 Source Module : mgidisp.c .. C-9

4.2.3

4.2.2.7.1
4.2.2.7.2
4.2.2.7.3
4.2.2.7.4
4.2.2.7.5

Header File : cdefmt.h C-9
Constants and Variables C-10
Gouraud Shading Control : Drawfacesolid0 C- 10

Animation Control : Drawbead0 C- 10
Viewing Control : lDR_setport0 C-10

4.2.2.7.6 Advanced Display Control : IDR_drawport0 C-10
4.2.2.8 Source Module : mgiedit.c ... C-10

4.2.2.8.1 Flight Path Construction : Faceundo C-11
4.2.2.8.2 New Gauge Reference Line Control : CDE_gfface ... C- 11
4.2.2.8.3 Define Flight Path Control : ME_define_path C- 11
4.2.2.8.4 Define Camera Utility : ME_fix_camera C-11

4.2.2.9 Source Module : mgifun.c ... C- 11
4.2.2.10 Source Module : mgipick.c C-11

4.2.2.10.1 Pick Bead Utility : IP_pickscreen C- 11
4.2.2.10.2 Pick Bead Utility : IP_getsymdb C-12

4.2.2.11 Source Module : mgmain.c ... C-12
4.2.2.11.1 Header File : cdefmt.h C-12
4.2.2.11.2 Constants and Variables C-12
4.2.2.11.3 Kernel Control : main C-13

4.2.2.11.4 MK Color Map : mgcolorinit C-13
4.2.2.11.5 Delete Symdb Utility : ME_imanuever C- 13
4.2.2.11.6 Select from ID Utility • Selectmenu C-13
4.2.2.11.7 Structure Menu Control : Strucmenu C-13

4.2.2.12 Source Module : mgpage.c ... C- 13
Data Base Logic Subsystem ... C-13

Table of Contents

4.2.4 Animation Kernel Subsystem ... C- 13
4.2.5 DMA Kernel Subsystem ... C-13
4.2.6 CDE Kernel Subsystem ... C-13

4.2.6.1 The CDE Data Structure : cdefmt.h C-14
4.2.6.2 Interface Director : cdefile.c ... C-14

4.2.6.2.1 Initializing the CDE : CDE_init C-14
4.2.6.2.2 Database Scan and Execute : CDE_scan_hiera C-16
4.2.6.2.3 Animation Control : CDE_transformation C- 17
4.2.6.2.4 Animation Initialization : CDE_animation_init C-17
4.2.6.2.5 Animation Attribute modification : CDE_
modlnkdocw .. C- 17

4.2.6.2.6 Editable Suing Control : CDE_addgetstring C-18
4.2.6.2.7 Multiple Bubble Control : CDE_mkbutton C-18

4.2.6.3 Interface Director : cdefunc.c .. C-18

4.2.6.3. I Initializing the Binary Tree : UDF_buildtree C-19
4.2.6.3.2 Evaluate the Binary Tree : UDF_eval C-19

4.2.6.4 Instrument Editor : cdegauge.c C- 19
4.2.6.4.1 Mathematics Background C-19
4.2.6.4.2 Top Level Menu Control : GAU_newgauge C-19
4.2.6.4.3 Gauge Paste Control : GAU_paste_gauge C-21
4.2.6.4.4 Writemask Control : GAU_gaugemask,
GAU_normalplanes .. C-21
4.2.6.4.5 Z-axis Alignment : GAU_refangle C-21
4.2.6.4.6 Translation Animation X-Axis Alignment :
GAU_transadjust .. C-21

4.2.6.4.7 Translation Animation X-Axis Alignment"
GAU_flttransadjust C-22
4.2.6.4.8 Translation Animation X-Axis Alignment :
GAU_icoordadj ... C-23

4.2.6.5 Advanced Display Editor : cdedisp.c C-23
4.2.6.5.1 Initialization : ADV_init C-23
4.2.6.5.2 Toggle Control Procedure • ADV_advdisp C-23
4.2.6.5.3 Interface Control : ADV_adspsetup C-23

4.2.6.6 Parameter Linker" cdelink.c ... C-24
4.2.6.6.1 Attribute Linking Control : LNK_linkit C-24
4.2.6.6.2 Attribute Update Setup •LNK_modparam C-26
4.2.6.6.3 Delete a Single Link • LNK_deletesymdb C-26
4.2.6.6.4 Remove Whole Link : LNK_rmlink C-26

4.2.6.7 Color Handler • cdecolor.c ... C-26
4.2.6.7.1 Initialization : CDCH colorinit C-26
4.2.6.7.2 Palette Control : CDCH_palette C-26
4.2.6.7.3 Color Insertion • CDCH_insertcolor C-27
4.2.6.7.4 Modify Color Control : CDCH_modcolor C-27
4.2.6.7.5 Color Intensity Control : CDCH_hi inten,
CDCH_lo inten .. C-27

4.2.6.8 Database Manager : cdepage.c C-28
4.2.6.8.0 Database Field Elements Structure C-28
4.2.6.8.1 Structure Pointer" CPG_getfieldtype C-30
4.2.6.8.2 Field Format Control : CPG_getfield C-30
4.2.6.8.3 Swing Field Control : CPG_getsuing C-30
4.2.6.8.4 Store Editable String to Database • CPG putfield C-31

Table of Contents

4.2.6.8.5 Verify the Editable String : CPG_movestr C-31
4.2.6.8.6 GENERAL Field Handler : CPG_pagegeneral C-31
4.2.6.8.7 Modify Attributes Window Control : CPG_mod_att.. C-31
4.2.6.8.8 New Attributes Window Control : CPG_newattr C-32

4.2.6.8.9 Symdb Structure Init : CPG_newsymdb C-32
4.2.6.8.10 Create New Link to Symdb Structure Tree :
CPG_cresym .. C-32
4.2.6.8.11 Attach Link to Parent Symdb Structure Tree :
CPG_attach ... C-32
4.2.6.8.12 Detach Link from Parent Symdb Structure Tree :
CPG_detach ... C-32
4.2.6.8.13 Set Parent Symdb : CPG_sel_set_attach C-33

4.2.6.9 Database Manager : cdefmter.e C-33
4.2.6.9.1 Selection Window : FMT_setup C-33
4.2.6.9.2 Control Window Processes : FMT_setproc C-33

4.2.6.10 Database Manager : cdeneig.c C-33
5.0 Notes ... C-33

5.1 Miscellaneous .. C-33
5.2 Limitations .. C-34
5.3 Future Directions ... C-34

6.0 Users Guide ... C-34
6.1 Introduction ... C-34
6.2 Related Documentation .. C-34
6.3 The Structure of CDE Hierarchical Database ... C-34
6.4 CDE Menu Commands .. C-35

6.4.1 Open Coord. File ... C-35
6.4.2 New Gauge ... C-35
6.4.3 Animation Init ... C-36
6.4.4 Load Link File .. C-36
6.4.5 Save Link File .. C-37
6.4.6 Link Parameter .. C-37

6.4.6.1 Chopper .. C-37
6.4.6.2 Parameter .. C-37
6.4.6.3 Function Handler ... C-37

6.4.6.3.1 Linear Mapping Function C-37
6.4.6.3.2 Periodic Mapping Function C-37
6.4.6.3.3 Truncate Mapping Function C-38
6.4.6.3.4 Linear Digit Mapping Function C-38
6.4.6.3.5 Drum Digit Mapping Function C-38
6.4.6.3.7 Natural Logarithmic Function C-39
6.4.6.3.8 User Defined Function C-39

6.4.6.4 Operation ... C-39
6.4.6.4.1 Rotation ... C-39
6.4.6.4.2 Translation ... C-40
6.4.6.4.3 ADI .. C-40
6.4.6.4.4 Pushbutton ... C-41

6.4.6.4.5 Toggle Switch ... C-41
6.4.6.4.6 Advanced Disp ... C-42
6.4.6.4.7 Vertical Scale ... C-42
6.4.6.4.8 Numerical LED .. C-42

6.4.6.4 Writemask ... C-42

Table of Contents

6.4.7 Color Palette .. C-42
6.4.8 Insert Color ... C-42
6.4.9 Modify Color ... C-43
6.4.10 Mod Attribute .. C-43
6.4.11 Data Format O/P .. C-43
6.4.12 ADSP Setup ... C-43
6.4.13 Advanced Disp .. C-43
6.4.14 Unlink All .. C-43

6.5 Error Messages and Diagnostics ... C-43
7.0 APPENDICES .. C-43

A. Glossary of Terms, Acronyms, or Abbreviations .. C-43
B. Sample Displays .. C-43

A3I Phase III Cockpit Design Editor CSCI Page C-1

1.0 INTRODUCTION

I.I Identification

This document establishes the requirements and detailed design of the Cockpit Design
Editor Computer Software Configuration Item (CSCI), which forms a part of the A3I Computer
Program System. Descriptions of the detailed processing requirements, structure, I/O, and control
are provided for each lower level Computer So ftware Component (CSC), unit, or function
contained within the CSCI.

1.2 Scope

This document describes the framework, function, and operation of the Cockpit Design
Editor developed during Phase III of the A3I Program. It is assumed that the reader has some
prior experience and understanding of how MultiGen works (i.e. mouse activated commands, pull-
down windows, dialog boxes, windows).

1.3 Purpose

The software described herein provides designers with the necessary tools to develop next
generation cockpits. The Cockpit Design Editor (CDE) operates within MultiGen, a commercially
available CAD modelling package developed and owned by Software Systems, located in San
Jose, California. The CDE is implemented as a subsystems of MultiGen and was developed by
A3I at NASA Ames Research Center.

The effectiveness of a designing tool is determined by its ease of use and power of
validation. The CDE builds upon the MultiGen user interface and its inherit intuitivness. The
cockpit designer is provided a

The basic operating and programming techniques of MultiGen are well documented in the
Software Systems MultiGen manuals. This document deals with the CDE software only. Figure 1
shows the CDE's internal modular structure. Currently, six software modules have been
developed for the CDE.

1. Interface Director - This is the central control module of the CDE kernel. It performs
several functions: initializes CDE kernel during program boot-up, controls data and commands
flow when a CDE menu has been selected, reacts to a animation request from the MultiGen display
module, and converts an A3I datafile to MultiGen i-format file.

2. Instrument Editor- Provides a set of construction tools enabling the user to easily model
conventional cockpit designs in 3-D. The Instrument Editor's built-in standard 3D display/control
library supports switches; dial, vertical scale, and knob type gauges; and vector fonts. For
instruments not included in the standard library, the operator can design the desired instrument
using the standard MultiGen modelling utilities..

A3I Phase III Cockpit Design Editor CSCI Page C-2

Color Handler

Interface Director

1
I

Parameter Linker

Cockpit Design Editor

Database Manager

Instrument Editor

I
Advanced Display Editor

Figure 1. The modular structure of the Cockpit Design Editor.

3. Advanced Display Handler - Gives the user a gateway for constructing a glass cockpit
type multifunction display ,which would be difficult, if not impossible, to generate by using the
standard Instrument Editor or MultiGen features alone. Two advanced displays, Perspective
Display and Contour Display, are currently running under the Advanced Display Handler.

4. Parameter Linker - Provides an interactive environment for the user to evaluate the
performance of the instruments that he or she just created or modified, in the "real" world. The
Parameter Linker g_ves the user full control to define the gauge animation type, model parameter
selection, and mathematical function handler. This visual interface allows the user to predict the
actual reactions for all instruments during the flight (execution).

5. Color Handler - Manages the color related CDE operations, such as lighted switch and
warning panels, etc.. The "writemask" utility provided by the Color Handler allows layering of
the images on the same instrument, such as ADI, drum counter, and heading tape.

6. Database Manager - Provides an interface for the designer to evaluate cockpit prototypes
in a non-MultiGen environment. A hierarchical descriptive database interface allows user to define
special properties for each instrument. Designer can link this database to other computer models
for on-line or off-line design analysis. Two graphical database formats are also provided for other
applications.

A3I Phase III Cockpit Design Editor CSCI Page C-3

2.0 RELATED DOCUMENTATION

2.1 Applicable Documents

Software Systems, Software Systems MultiGen - Modeller's Guide, Interface Manager,
MultiGen Kernel, Writing MultiGen DBL , San Jose, CA, 1987.

Teh-Ming Hsieh, Phase H Cockpit Display Editor Software - Software Component
Description Document for the A3I Program, 1987.

2.2 Information Documents

Yvon Gardan and Michel Lucas. Interactive Graphics in CAD, UNIPUB, New York,
NY, 1984.

Franco P. Preparata and Michael Ian Shamos, Computational Geometry - An Introduction,
Springer-Verlag, New York, NY, 1985.

Leendert Ammeraal, Programming Principles in Computer Graphics, John Wiley and Sons, West
Sussex, England, 1986.

Nadia Magnenat-Thalmann and Danial Thalmann, Computer Animation: Theory and
Practice, Springer-Verlag, Tokyo, Japan, 1985.

Silicon Graphics Inc., IRIS User's Guide, Volume I and II, Version 3.0, Mountain View,
California, 1986.

Silicon Graphics Inc., IRIS Programmer's Manual, Volume IB, System Calls and
Subroutines, Version 2.1, Mountain View, California, 1986.

REQUIREMENTS AND DESIGN APPROACH

Requirements and Rationale

The major development requirements for the CDE in the Phase III period are:
• To make the CDE compatible with the new Flight database.
• To design a descriptive database interface which allows user to specify physical

meaning for each instrument.
• To provide a non-programmer interactive graphic interface for designers to prototype

cockpits in 3D.
• To upgrade animation features for the helicopter dynamics and system models.
• To improve the capabilities to integrate, and to interact with the "Glass Cockpit" style

advanced displays.
• To develop a graceful, intuitive mechanism for the user to link instruments and displays

to the system models.
• Avoid duplication on program development and training.

A3I Phase HI Cockpit Design Editor CSCI Page C-4

3.2 Hardware Environment

The suggested minimal equipment configuration for running the CDE and for code
development is a Silicon Graphics IRIS 2500T color system, with 8 MB of memory, 32 1024 x
1024 bit-planes with 16 bit Z-buffer, and 120 MByte storage capacity

Ideally, the best platforms for running and developing code for the CDE are SGrs IRIS 4D
series computers. The new IRISes, based on a totally different architeture than its prediscesors,
are considerably quiker both in terms of CPU speed and geometric rendering. The same memory,
bit-plane, Z-buffer and storage configuration as listed for the IRIS 2500T are also recommended
for the IRIS 4D.

3.3 Software Environment

Elements of the IRIS software environment most important to the CDE Phase III effort are:

• The IRIS Graphics Library II (GL2), a general-purpose, easy-to-use graphics library.
• the Software Systems' Interface Manager, a mouse and window oriented user interface

library.
• TCP/IP, an industry standard Ethemet network protocol,
• Network File System (NFS), a remote file access facility,
• The UNIX V operating system with Berkeley (4.3 bsd) extensions. C compiler, and a

development/debugging environment integrated with the C compiler.
• System V and Berkeley utilities for source-code control (sccs and rcs), program

debugging (adb, sdb and dbx), and code development (make, lint, lex, yacc, awk and
others), in addition to more than three hundred utilities available on most recent
versions of System V and 4.3 bsd UNIX.

4.0 DETAILED DESIGN DESCRIPTION

4.1 Organization

As shown in Figure 2, the CDE software is integrated within the MultiGen system and
Views software. MultiGen is an interactive modeling system for creating, editing, and viewing 3D

data bases for visual simulation. The purpose of the Views software is to generate a set of tools
for creating the simulation world. The original MultiGen system is composed of three separate

software

A3I Phase III Cockpit Design Editor CSCI Page C-5

IRIS 3120 Graphics Library (GL2)

Interface Manager

imcont.c imlib.c immem.c immenu.c imtext.c imwind.c imde.c

MultiGen Kernel A3I Kernel

mgcom.c mginfo.c
mgconcc mgipick.c
mgdbvw.c mgistruc.c
mgdesk.c mgiutl.c
mgdev2d.c mgixform.c
mgfile.c mgmain.c
mgicnstr.c mgmath.c
mgiconst.c mgpage.c
mgicre.c mgstd.c
mgidisp.c mgtab.c
mgidl.c
mgiedit.c
mgifun.c
mgilib.c
mgiman.c

•.q _111,

I
Animation/VIEWS Cockpit Design Editor

I

I
a3itcp.c
a3iutil.c I

animate.c I
aplselect.c
fifo__comm.c I

font40.c I
fontT.c
getfont.c I

path.c I
simdata.c

I

I

cdef'de.c
cdefunc.c
cdelink.c
cdecolor.c
¢dgdigp.c

cdefmter.c

cdeneig.c
cdepage.c

cdegauge

Data Base Logic

fltcolor.c fltdbl.c fltid.c fltio.c fltlink.c fltpage.c

Figure 2. The Integration of CDE and Other Software Systems.

subsystems (i.e. the Interface Manager Subsystem (IM), the MultiGen Kernel Subsystem (MK)
and the Data Base Logic Subsystem (DBL) that are linked together to make an executable MultiGen
program. The CDE software is built on top of the original MultiGen system as a subsystem.
Similarly, Views is also built on top of MultiGen but consists of two subsystems: Animation

A3I Phase III Cockpit Design Editor CSCI Page C-6

Kernel Subsystem and DMA Kernel Subsystem. All software systems discussed herein are
implemented on a Silicon Graphics IRIS 3120 workstation. The Graphics Library of the IRIS
3120 is a set of graphics and utility routines that provide high- and low- level support for graphics.

The Interface Manager Subsystem is a collection of procedures that support a mouse and
window oriented user interface. The subsystem accepts all the commands from the user and
passes the information to the appropriate subsystem.

The MultiGen Kernel Subsystem consists of a programming environment and a graphics
editor. The programming environment provides procedures that can be called to create or
manipulate MultiGen's internal format and parts of the user interface, and to perform other
utility functions.

The Data Base Logic Subsystem (DBL) provides data base independence in MultiGen. Its
functions are to access an "ofmt" for the MultiGen Kernel, to handle user interface issues
such as coordinate displays, terminology and modes, and to provide special purpose menu
functions for an "ofmt". It is implemented as a series of low level procedures that are
called form the MultiGen Kernel via the DBL linkage.

The Animation Kernel Subsystem provides a facility to view the A3I Mission Simulation in
different viewing perspectives using 3D graphics. Windows are displayed on the screen to
present the views. The Animation Kernel Subsystem obtains simulation data from the
Executive program through inter-process communication pipeline or reading from a data
file.

The DMA Kernel Subsystem is used to extract elevation data from any standard Level 1
DMA's DTED tape and convert it into shaded 3D representations of terrain surfaces. The
generated terrain surface is saved into a data base file for later editing.

The CDE Kernel Subsystem provides tools to construct, animate, and evaluate cockpit
prototypes. The CDE Kernel Subsystem closely interacts with other Kernels through
strictly defined procedure calls and global data structures linkage.

4.2 Unit Detailed Design

4.2.1 Interface Manager Subsystem

The Software Systems' Interface Manager Subsystem (IM) is a collection of C procedures
that support a mouse and window oriented user interface on the Silicon Graphics IRIS
workstation. It provides the interface between the user and the application program. The Interface
Manager imposes an architecture on the application program that is appropriate for the random
sequence input from the user. Detail information on describing the Interface Manager Subsystem's
environment and procedures can be found in Software Systems MultiGen, Programmer's Guide
to the Interface Manager, Release 1.1, September, 1987. For detailed IM modification please
refer to Views SDDD.

4.2.2 MultiGen Kernel Subsystem

A3I Phase HI Cockpit Design Editor CSCI Page C-7

Software Systems' MultiGen Kernel Subsystem is composed of 25 source modules. As
in the IM, externally callable procedures are preceded by a two to four capital prefix and an
underscore. A brief description for each module listed below.

Module Prefix Purpose

mgcom.c COM_
mgcont.c AC_
mgdbvw.c DBVW_

mgdesk.c DH_
mgdev2d.c DEV2_
mgfile.c FM_
mgicnstr.c MCN_
mgiconst.c MC_
mgicre.c MCR_
mgidisp.c IDR_
mgidl.c ID_
mgiedit.c ME_
mgifun.c GF_
mgilib.c IL_
mgiman.c MN_
mginfo.c MIF_
mgipick.c IP_
mgistruc.c ISD_
mgiutl.c IU_
mgmain.c MA_
mgmath.c ML_
mgpage.c PA_
mgtab.c TAB_
mgstd.c SS_
mgixform.c XFLL

Communication of variables common to DBL and kernel.
MultiGen auxiliary controls.
Handles controls which associated with a MultiGen view
window.
MultiGen desktop control.
MultiGen 2-D device independence file.
MultiGen file management routines.
MultiGen low level I format construction routines.
MultiGen I format construction routines.

Complex object creation routines.
MultiGen I format pick and display.
MultiGen display list utilities.
MultiGen I format edit routines.

MultiGen graphics primitives manipulation functions.
MultiGen I format bead management routines.
MultiGen top level maneuver routines.
MultiGen timebomb information.
MultiGen I format pick procedures.
I format structure display.
MultiGen I format utility routines.
MultiGen kernel main program.
MultiGen mathematics library functions.
MultiGen ofmt page editor.
MultiGen auxiliary input device file.
MultiGen standard header access routines.
Instance transformation tools module.

Table I-1. MultiGen Kernel Source Modules.

Detailed information regarding MK please refer to Software System MultiGen,
Programmer's Guide to the MultiGen Kernel, Release 2.0, 1987. Some files which have been
tailored for A3rs simulation will be discussed in this section. Source listing for MK can be found
at the directory "/fl/mg3.0/Mg/Ker" of orca.

4.2.2.1 Data Structure : mgfmt.h

The global collection of MK variables and constants are defined in file"mgfmt.h". Five
variables are added to "ibead" structure in "mgfmt.h" for A3I applications.

V_ablc Pvrpos¢

int a3iflag

int cdeflag

TRUE if current ibead is an Views animated

object; FALSE if otherwise.
= 0 current ibead is not a CDE animated object.
MSB: TRUE-turn on CDE writemask; FALSE if not.

A3I Phase III Cockpit Design Editor CSCI Page C-8

int gdbinfo

int cdeinfo
int syminfo

LS 7-bit: represent the CDE mapping function.
pointer to dynamics/system model parameters

structure.

pointer to CDE animation adjustment structure.
pointer to CDE descriptive database structure.

4.2.2.2 Source Module : mgcom.c

Two externally referenced variables "COM_internai_resol" and "COM_internal_resol_inv"
are modified for higher database resolution. Listed below are the available resolutions:

/* x = (3/8) / 12.0 = 0.03125; 1/x = 32.0 */
/*MLTYPE COM_internal_resol = 32.0;
MLTYPE COM_intemal resol_inv = 0.03125;
*/

/* x = (1/64) / 12.0 = 0.001302083; 1/x = 768.0 */
MLTYPE COM_internal_resol = 768.0;
MLTYPE COM internal_resoljnv = 0.001302083;

/* x = (1/128) / 12.0 = 0.000651041; 1/x = 1536.0 */
/*
MLTYPE COM_internal_resol = 1536.0;
MLTYPE COM_internal_resol_inv = 0.00065104 1;
*/

/* x = (1/256) / 12.0 = 0.000325520849; 1/x = 3072.0 */
/*MLTYPE COM_internal_resol = 3072.0;
MLTYPE COM_intemal_resoljnv = 0.000325520849;
*/

User selects the desired resolution and comment out others. The sample listing above
showing user picking the 768-internal-resolution equal to 1-foot.

4.2.2.3 Source Module : mgdesk.c

The mgdesk module is modified to handle A3I unit exchange routines. The modification
includes two global variables and two local reference procedures.

4.2.2.3.1 Constants and Variables

Variabl_

#define FEETBUTrONS
#define MGBUTI'ON

int DH_Displaycoordtype

int DH_Displaycdetype

added feet/inch bubble in control window
added mg/cde bubble in control window
= 0 current displayed coordinates are in feet.
-- 2 current displayed coordinates are in inches.
= 0 normal MultiGen database logic.
= 1 switch to CDE database logic.

4.2.2.3.2 Inches/Feet Bubble Control : Enterfeet0

A3I PhaseIII Cockpit Design Editor CSCI Page C-9

The Enterfeet function sets up the variable DH_Displaycoordtype and updates the tracking
coordinates in the tracking window.

/* called when "inches/feet" bubble control hit */
int Enterfeet (w, c, button, oldc, drawflag)
windowpt w; /* pointer to control window */
controlpt c; /* not used */
int button; /* id for the selected bubble */
controlpt oldc; /* not used */
hat drawflag; /* not used */

4.2.2.3.3 MG/A3I Bubble Control : Entermg0

The Entermg function sets up variable DH_Displaycdetype which controls the database
command logic.

/* called when "MG/A3r' bubble control hit */
int Entermg (w, c, button, oldc, drawflag)
windowpt w; /* not used */
controlpt c; /* not used */
int button; /* id for the selected bubble */
controlpt oldc; /* not used */
int drawflag; /* not used */

4.2.2.4 Source Module : mgicnstr.c

All of the modifications in this module are related to add an extra argument in IL_addivertex
function calls. Refer to module mgilib.c for detailed information.

4.2.2.5 Source Module : mgiconst.c

The MC_mouse2vtx function in this module has been modified for the "define flight path"
utility. During this mode, multiple surfaces are involved for coordinate computations. When the
user selects a point the tracking plane function PAT_trackplane is called to locate the correct terrain
surface, and setup a new plane equation for coordinate computation.

4.2.2.6 Source Module : mgicre.c

All of the modifications in this module are related to the extra argument in IL_addivertex
function calls. Refer to module mgilib.c for detailed information.

4.2.2.7 Source Module : mgidisp.c

Major modifications are made in this module for the A3I animation facilities. Please study
the code carefully before making changes.

4.2.2.7.1 Header File : cdefmt.h

Header file cdefmt.h is included in this module for global reference to CDE defined
constants.

A3I Phase HI Cockpit Design Editor CSCI Page C-10

4.2.2.7.2 Constants and Variables

Variable

#define SGIDLDRAW changed to FALSE to enable immediate draw mode.

4.2.2.7.3 Gouraud Shading Control : Drawfacesolid0

This function has been modified for the A3I Gouraud shading utility. The modified
program is activated by shading flag DR_shade. When DR_shade is TRUE, the program will
first look for vertex color "vcolor", if it exists. Gouraud shaded surfaces are constructed according
to the vertex colors, otherwise, a flat shaded surface defined by face color is displayed.

4.2.2.7.4 Animation Control : Drawbead0

To animate objects in the MultiGen environment it is necessary to track all the beads all the
time. The best place to insert these animation control commands is in theDrawbead function, since
it will recursively scan all beads in order. The modifications are inserted at the beginning and
ending sections of the drawing loop :

1). MultiGen original matrix based animation operation are disabled.
2). Check for bead->a3iflag, if TRUE then program will call the ANA_transformation to

setup world object animation.
3). Check for bead->cdeflag, if TRUE then program will call the CDE_transformation to

setup CDE insmament animation.
4). Drawing loop.
5). Check for bead->cdeflag and bead->a3iflag, if TRUE then restore the corresponding

graphics transformation matrix.

4.2.2.7.5 Viewing Control : IDR_setport0

This procedure is modified to create moving camera views and pilot views. The Control
flag is the windowtype which is a member of IM's window structure. If the value of windowtype
is greater than zero, than this window structure is pointed to a moving camera or pilot view
window. For these windows, ANA_pilotview will overwrite the original procedure for computing
and setting up the window viewing matrix. Refer to animate.c module for detailed information
regarding ANA_pilotview function.

4.2.2.7.6 Advanced Display Control : IDR_drawport0

Code is added to this function for advanced display and head-up display. Control flags are
ADVDSP_TYP for CDE advanced display and ANA hud_flag for head-up display. The
computations for lower left and upper right screen coordinates for the display region are done by
the ANA_transformation and CDE_transformation functions. The handling function for CDE
advanced display is ADP_advdisp of cdedisp.c, and for the head-up display it's ANA_hud_display
of animate.c.

4.2.2.8 Source Module : mgiedit.c

A3I PhaseIII Cockpit DesignEditor CSCI Page C-11

Some of the modifications in this module are related to the extra argument in IL_addivertex
function calls. Refer to module mgilib.c for detailed information. Other modifications are made
for A3I applications.

4.2.2.8.1 Flight Path Construction : Faceundo
This procedure is modified to support the UNDO function of the "Define Flight Path"

utility. During this mode, when the user issues an UNDO command, the waypoint stack pointer
No of waypoint will decrement by one. The previous waypoint will be removed from the
waypoint stack.

4.2.2.8.2 New Gauge Reference Line Control : CDE_gfface
This function is called to draw a dotted reference line when the user creates a new gauge.

int CDE_gfface 0

The CDE_gfface function takes no argument and three local functions GFvtx, GFundo,
GFdone are called by CDE__gfface for control menu function handler.

4.2.2.8.3 Define Flight Path Control : ME define_path
The ME_define_path is called to define a flig_t path o_the 3D terrain. It will computes the

coordinate and elevation for each selected point and prompt theuser for the vehicle altitude,
airspeed, and heading data at that waypoint.

ME_define_path (change_way_point)
int change_way_point; /* TRUE if modifying flight path, FALSE if creating

a flight path */

4.2.2.8.4 Define Camera Utility : ME fix camera
This function will draw a dotted line-of'7-sigfii reference line when the user defines a fixed

camera view. Like the CDE_gfface function, ME_fix_camera takes no arguments, and the three
local functions Fixvtx, Fixundo, Fixdone are called for by the control menu function handlers.

4.2.2.9 Source Module : mgifun.c
The function GF_coord2screen has been rewritten for compatibility with the new IRIS

4DGT graphics engine. Instead of using feedback mode, which is no longer support by SGI, the
A3I staff is using the getcpos command for maximum compatibility and processing speed.

int GF_coord2screen (ip, iq)
icoordpt ip; /* Input x,y,z world coordinate */
icoordpt iq; /* Output x,y screen coordinate */

If input point is clipped out of the screen the FALSE will return and iq.x will equal minus
one.

4.2.2.10 Source Module : mgipick.c

This module has been modified to handle additional CDE descriptive databases. When the
user selects a screen object, depending on the DH_Displaycdetype, the MK graphics ID or CDE
descriptive title will be displayed and flag them as selected.

4.2.2.10.1 Pick Bead Utility : IP_pickscreen

A3I PhaseIII Cockpit Design Editor CSCI Page C-12

When condition control flag DH_Displaycdetype is TRUE, CDE symdb search routine
IP_getsymdb is called to determine wether the mouse selected object is defined by the CDE
database or not. If it is a defined object, its title will be displayed on the window and the object
will be high-lighted, otherwise an error signal beep will be heard.

4.2.2.10.2 Pick Bead Utility : IP getsymdb
This function locates the CDE datal_ase bead (symdb) based on current cursor position for

top most window.

dialparampt IP_getsymdb (topib, w, picklevel)
ibeadpt topib; /* top ibead pointer for current window */
windowpt w; /* current window structure pointer */
int picklevel; /* beadlevel to pick */

The IP _getsymdb procedure will first call Picksymdb with the ibead pointer and bead pick
level. If Picksymdb returns FALSE, indicating there is no CDE database linked to the selected
ibead, an error beep will sound. Otherwise, IP_getsymdb procedure will call Leveladjust with
symdb pointer and picklevel. If Leveladjust retums FALSE, than the selected object is undefined
in the pick level and an error beep will sound.

4.2.2.11 Source Module : mgmain.c

The global collection of MK variables and constants are defined in file"mgfmt.h". Five
variables are added to "ibead" structure in "mgfmt.h" for A3I applications.

4.2.2.11.1 Header File : cdefmt.h

Header file cdefmt.h are included in this module for global reference of CDE defined
constants.

4.2.2.11.2 Constants and Variables

Variabl¢
copterstrucpt Obj_infoptr
int ANA_windowflag
int ANA_standalone
int APL_select_flag
int PAT_select_flag
int VER_scale_flag
dialparampt Dial_infopt
dialanapt Dial_anapt
mt No_dial
int ADVDSP_TYP
mt ID_Gouraud_shade
mt IDR_Zbuffer_flag
mt AC Elev_diff
mt AC_old_y
int IP_pickmode
lcoord IDR_adpll
icoord IDR_adpur
icoord ANA_hudll

/* for VIEWS animation option */
/* flag for open animation window */
/* animation standalone mode flag */
/* APL flag for select area option */
/* APL 8-14-87 flag for flight path select option */
/* flag for vertical scale animation */
/* CDE descriptive database structure pointer */
/* CDE animation run-time register structure */
/* number of defined CDE database */
/* default set to No advanced display */
/* Gourand shading flag */
/* Zbuffer flag */
/* fix camera elevation adjustment control */
/* v->lookfrom.y before change */
/* Pick mode flag */
/* lower-left comer coordinate of ADP */
/* upper-right comer coordinate of ADP */
/* lower-left comer coordinate of HUD*/

A3I Phase III Cockpit Design Editor CSCI Page C-13

icoord ANA_hudur
int ANA_hud_flag

/* lower-left comer coordinate of HUD */
/* flag for turn on the head-up-display */

4.2.2.11.3 Kernel Control : main
This function initializes MultiGen and turns over control to the Interface Manager. To

make rooms for CDE color map the f'u'st argument of DBL_colormap has been changed to 256 in
order to lransfer 256 color indices from DBL to CDE. The DMA_init, ANA_init, and CDE_init

functions are also added for A3I options.

4.2.2.11.4 MK Color Map : mgcolorinit
The color index 16 is reserved for the CDE writemask function. To avoid multiple color

def'mitions at that index, conditional branch is added to prohibit MK from using that color index.

4.2.2.11.5 Delete Symdb Utility : ME imanuever
If the DH_Displaycdetype is TRUE when the user selects the delete icon,

LNK_deletesymdb will be called to unlink current selected symdb and below from link list.

4.2.2.11.6 Select from ID Utility : Selectmenu
If the DH_Displaycdetype is TRUE, when the user selects the "Select from ID" menu,

FMT_str2sym will be called to find the corresponding symdb and flagg the object on the window.

4.2.2.11.7 Structure Menu Control : Strucmenu

If the DH_Displaycdetype is TRUE, when the user selects the Structure menu, the "set
parent", "attach", and "detach" utilities are directed to the symdb structure handlers :
CPG_sel_set_attach, CPG_attach, and CPG_detach.

4.2.2.12 Source Module : mgpage.c
To support CDE symdb database documentation utilities, the PA_docedpage function has

been modified to carry database pointer (dblpt) into w->misc slot for the GENERAL document
field.

4.2.3 Data Base Logic Subsystem
Flight database procedures are called from the Kernel through a DBL linkage module. The

DBL linking module tightly links the Kernel and the Flight database together. For detailed
information about the DBL subsystem please refer to Views SDDD.

4.2.4 Animation Kernel Subsystem

4.2.5 DMA Kernel Subsystem

4.2.6 CDE Kernel Subsystem

Refer to Figure 1. The CDE can be divided into five different functional modules, Interface
Director, Instrument Editor, Advanced Display Editor, Parameter Linker, Color Handler and
Database Manager. Each module contains one or more files, externally callable procedures in these
files are preceded by a three or four letter file prefix and underscore. This allows the programmer

A3I Phase III Cockpit Design Editor CSCI Page C-14

to easily locate the source file for a particular procedure from its name. Table 4.x shows the
modules, source files, and prefix in CDE Kernel.

Module Source File Prefix

Interface Director cdefile.c CDE_
cdefunc.c UDF_

CDE interface control manager
user defined function handler

4.2.6.1

Instrument Editor

Advanced Display Editor

Parameter Linker

Color Handler

Database Manager

cdegauge.c GAU_

cdedisp.c ADV_

cdelink.c LNK_

cdecolor.c CDCH_

cdepage.c CPG_
cdefmter.c FMT_
cdeneig.c NGA_

TABLE 4.x CDE Kernel Subsystem Source Modules.

The CDE Data Structure : cdefmt.h

Instrument editor manager

Advanced Display edit and control

CDE animation manager

CDE color editor manager

CDE database interface manager
Database conversion management
Neighborhood analysis handier

The definition of CDE data structures and defined constants are found in the file cdefmt.h.

This file should be included in each application source program that uses CDE. The cdefmt.h will
include the IRIS file stdio.h for the applications.

4.2.6.2 Interface Director : cdefile.c

The source file cdefile.c (Figure 3) is the CDE's overall interface manager, it responds to
the CDE menu commands and gauge animation controls.

4.2.6.2.1 Initializing the CDE : CDE init
m

The CDE_init is called when MultiGen put up the CDE menu:

CDE_init 0 /* Initialize CDE operations */

CDE_init setup the CDE environment by assigning the CDE message and menu file
pointers, loading CDE color table, initializing CDE data structures and advanced display terrain
data. Two files are opened by CDE_init:

cde.menu

cde.msg

Text menu resource file for the CDE pull-down menues that can be selected
with the mouse to issue commands.

Text message resource file that defines the messages and templates which
were used by the CDE.

Please refer to Programmer's Guide to the Interface Manager for detailed information on how to
set-up menu and message files.

A3I Phase III Cockpit Design Editor CSCI Page C-15

Animation Control

CDE_animation_init 0
CDE_transformation 0

°° ,..,..........m.............,..o.o.o........, ..., ,....o............°.

Init..one 0
Header_init 0
Console_init ()

Panel_init 0
Flt_ctl_init 0
Fltfindvtx 0
Findcoord 0
Centervex 0
Allvtx 0
Transforfunc 0
Linearfunc 0
Periodicfunc 0
Truncatefunc 0

Lineardigitfunc 0
Drumdigitfune 0
Natuallogfunc 0
Sinusoldalfunc 0

Attitudefune 0

Toggleswfunc 0
Pushbtnfunc 0
Userdeffunc 0
Adpfunc 0
Exec_select 0
Exee vscale 0
Exec nled 0
Exec..rotate 0

Exec_translate 0

][ni_aliza_on

CDE_init 0

Menu Control

CDE_menu 0
...................... _,o,o,,,,.,,.,..o_...Ro,..o.....,..,...

Opencorfile 0
Loadlinkfile 0
Savelinldile 0

Modify Attribute

CDE_modlnkdocw 0
................ , ,,.,.,,,,, ,...,

Glnkbuttons 0
Killpage 0

Getlnkstring 0

Inbvrfacv U_Uties

CDE_mkbutton 0

CDE_addgetstring 0

Scan and Ex_

CDE_scan_hiera 0

UDF buildtree 0
UDF_eval 0

Pocode 0 Myatof 0
Pushcode 0 Form_number 0

Poprand 0 Convert 0
Pushrand 0 Checkpriority 0
Leaf 0 Get]eftpar 0
Branch 0 Poprest 0

Figure 3. Procedures compring each Interface Director function.

A3I Phase HI Cockpit Design Editor CSCI Page C-16

Parameter Linker

Dial_in/opt g CDE_animation_init 0

Dial_anapt []

ibeadpt 0 Function Handlers

CDE_transformation 0 ObJ_infoptr 0

l

Before Animation

During Animation

Communication Module

Figure 4. The Animation related procedures internal Structure.

4.2.6.2.2 Database Scan and Execute : CDE scan hiera
m w

The CDE_scan_hiera procedure is called to scan all of the symdb bead tree below a given
symdb and perform a given operation for each symdb.

CDE_scan_hiera (iarg, symdb, nextflag, func)

A31 Phase III Cockpit Design Editor CSCI Page C-17

int iarg;
dialparampt symdb;
int nextfiag;
int (*func) 0;

/* argument for operational function */
/* scan this bead and tree below */
/* control flag for recursive search */
/* operational function for each bead */

This is a general purpose database utility procedure which can be used by all CDE database
applications. Usually the initial caller should set nextflag equal FALSE.

4.2.6.2.3 Animation Control : CDE transformation

By decoding cdeflag for a given ibead, CDE_transformation will determine a graphics
transformation matrix for the given ibead and tree below during the animation.

CDE_transformation (ib)
ibeadpt ib; /* animate this ibead and tree below */

Animation works by first finding the mapping function which computes the operation
parameter from the given system parameter, the setup of the graphics transformation matrix and/or
color assignment depends on its symdb operation flag. Figure 4 demonstrates the calling
sequences for the animation related procedures.

4.2.6.2.4 Animation Initialization : CDE animation init
w

The CDE_animation_init is called when the programmer wants to initialize the CDE
descriptive database and run-time animation registers.

CDE_animation_init 0 /* Animation Init menu item procedure */

CDE_animation_init calls the CDE_standalone to setup Views object structure, clear the
old structure tree, and calls Init_one to establish database structure. The final step is to create a
control level index array Gindex which will be used in the CDE Modify Attributes utility.

4.2.6.2.5 Animation Attribute modification : CDE modlnkdocw

This routine is called when the user executes the CDE Modify Attribute command. It will
display a list of instruments that are linked to the helicopter dynamics or system models. The user
can select any item from the link list and interactively examine or edit its linking attributes. The
changes will be reflected in the simulation immediately.

windowpt CDE_modlnkdocw (de, msgno, maxlines, controlproc)
docedpt de; /* message file pointer */
int msgno; /* message ID */
int maxlines; /* maximum lines in the text window */
int (*controlproc) 0; /* function handier when SELECT button hit */

The CDE_modlnkdocw is not easy to understand nor to use. First, the user needs to setup
a message file corresponding to the list structure:

struct {
point delta;
point size;

/* returned relative to lower left */
/* returned as parameter size in X, Y */

A3I Phase III Cockpit Design Editor CSCI Page C-18

int field;
int ftype;

} flist[30];

/* data field id defined by Getlnkstring 0 */
/* button control type */

As shown below, displayed items are defined by the list structure. The flist.field will
convert to the description string by procedure Getlnkstring; The Space between the left and the
right brackets define the size of the viewing window; The flist.ftype is the button control flag.

4500: Sample Link List

ID Purpose
[<flist[0 l geld> <flistl 1 l geld >

</flist[2].ftype Select>

The CDE_modlnkdocw will first setup the list structure from message file, next,
Getlnkstring is called for each animated instrument to fill the text array, and initialize button control
procedure, than turn the control over to the window manager.

4.2.6.2.6 Editable String Control : CDE_addgetstring

This procedure is almost identical to the IDE_addgetstring except CDE_addgetstring sets up
editable text with a color of WHITE instead of BLACK.

CDE_addgetstring (w, string, maxlen, func)
windowpt w; /* the document window pointer */
char *string; /* the text string */
int maxlen; /* maximum length of text */
int (*func) 0; /* called when user press RETURN */

The text string should be initialized to a NULL string or to a default string that will appear
as selected text in the window when it is activated.

4.2.6.2.7 Multiple Bubble Control : CDE mkbutton
m

This procedure allows the user to define a group of bubble controls which share the same
bubble control function.

CDE_mkbutton (bubble, w, func, ctrtype)
int bubble; /* number of bubble controls want to create */
windowpt w; /* window to add the control */
int (*func) 0; /* called as bubble state change */
int ctrtype; /* control type should be BUBBLE */

CDE_mkbutton first calls the ICM_addfirstbubble to setup the first bubble control of the
group, additional controls are added to the group by calling the ICM_addbubble procedure.

4.2.6.3 Interface Director : cdefunc.c

A3I PhaseIII Cockpit DesignEditor CSCI Page C-19

The User Defined Function should be part of the Animation Control, however, its unique
characteristic makes it separate from other function handlers and require it to have a special file.

4.2.6.3.1 Initializing the Binary Tree : UDF_buildtree

4.2.6.3.2 Evaluate the Binary Tree : UDF_eval

4.2.6.4 Instrument Editor : cdegauge.c

The file cdegauge.c provides a non-programmer environment that allows the user to create
standard gauges in 3-D space.

4.2.6.4.1 Mathematics Background

Before reading the source code, the programmer needs to understand the algorithms and
program structure behind the operations. Basically, gauge pasting is a three steps problem:

Interface Control Procedures - GAU_newgauge 0, that set-up the menu driven user
interface and controls the procedure calls in Instrument Editor.

Axis Alignment Procedures - GAU_paste_gauge 0, GAU_refangle 0, and
GAU_transadjust 0 procedures convert reference coordinates to world coordinate for
each new instrument. The reference coordinate assumes all new gauges are drawn on
the X-Y plane with the positive Z-axis as the direction of its normal vector. For every
instrument to be created, an Attached Face and an Alignment Axis will be assigned by
the user to compute the 3D transformation matrix (Figure 5 ,). The computation steps
are as follows:

1. Find the normal vector for the Attached Face

2. Translate the Origin to the Center of the Instrument
3. Align the Z-axis to the normal vector by calculating the X- and Y-axis rotation

angles
4. Rotate the Z-axis to let the Y-axis :match up with the alignment axis
5. Set-up the transformation matrix according to the center of the instrument and three

rotation angles.

Paste Instrument - This is done by individual "xxxshow" procedures, each procedure
load the transformation matrix created in the earlier step and obtain the world
coordinate by calling GF_transform_coord procedure with reference coordinate as
argument.

4.2.6.4.2 Top Level Menu Control : GAU_newgauge

This procedure is called when user selects the CDE New Gauge menu item. It displays a
list of the instruments that are supported by the build-in library, and prompt user to select one to
paste on the instrument panel.

A3I Phase III Cockpit Design Editor CSCI Page C-20

Normal Vector

Alignment Axis

Y

Z

ched Face

Center of Instrument

X

(a)

_Normal Vector

Allgnment _/_/4/XI

__ttacX_ ed Face

(b)

Y0

Y1
• Z2

tI

{c)

X2

(d)

Z2

Y2

(e)

Figure 5. Axis Alignment procedures, (a) original 3D space, (b) (c) Align the Z-axis
to the face normal vector, (d) Match the Y-axis to the alignment axis, (e)
Transform the object to the new coordinate system.

A3I Phase III Cockpit Design Editor CSCI Page C-21

4.2.6.4.3 Gauge Paste Control : GAU_paste_gauge

This procedure sets the paste gauge transformation matrix from pasted gauge center and
alignment point and static variable Refstring which contains the attached face ID.

GAU_paste_gauge (ctrp, refp)
icoord ctrp; /* gauge center coordinate */
icoord refp; /* alignment coordinate */

GAU_paste_gauge fast calls DBL_id2i for the attached face ibead pointer, then calls
GF_face_normal for the normal vector of attached face, then calibrates Z-axis with normal vector

by calling GAU refangle, and calls Gaugeadjust to match Y-axis with the alignment axis.

4.2.6.4.4 Writemask Control : GAU_gaugemask, GAU_normalplanes

These procedures are called when writemask operation is applied to a selected gauge.
GAU_gaugemask will protects non-erasable from overlay by ordinary drawing routines and
GAU_normalplanes is to reset writemask to original MultiGen writemask. Both procedure take no
argument.

GAU_gaugemask 0
GAU_normalplanes 0

4.2.6.4.5 Z-axis Alignment : GAU_refangle

The GAU_refangle returns X- and Y-axis rotation angles that will align the given normal
vector with Z-axis.

GAU_refangle (i, j, k, thetax, thetay)
float i; /* normal vector X-axis component */
float j; /* normal vector Y-axis component */
float k; /* normal vector Z-axis component */
int *thetax; /* X-axis rotation angle (xl0 degree) */
int *thetay; /* Y-axis rotation angle (x 10 degree) */

4.2.6.4.6 Translation Animation X-Axis Alignment : GAU_transadjust

The GAU_transadjust is called for translating related animation where all three axes needed
to be align with attached face.

GAU_transadjust (bead, fn, ip, vtx, thetay)
ibeadpt bead; /* bead pointer for attached face */
vector fn; /* normal vector for the attached face */
icoord ip;]* center or reference coordinate */
int vtx; /* vertex order for the horizontal (X-axis) axis */
int thetay; /* Y-axis rotation angle in order to match Z-axis to face normal */

This procedure also needs some detailed explanations of how it works. Normally, rotation
related animations need only Z-axis to be aligned for the attached face. This routine aligns the X-
axis with a user defined horizontal edge; doing this causes the Y-axis to align with the vertical axis
automatically, that is, all three axes are aligned. First, GAU_transadjust forms a standard

A3I Phase HI Cockpit Design Editor CSCI Page C-22

horizontal vector (vl) from given edge vertex order (vtx). As shown in Figure 6, to form the
second vector (v2) user have to compute ipt3 from ip and thetay, this is done by procedure
Rotate_.y. It is straightforward to obtain the X-axis adjustment angle (trad) from vl and v2. The
GAU_transadjust returns the angle in the unit of tenth of one degree.

(a)

z

Y

Face Normal Vector

V2 = VI afterRotate_y

Z 1 AUachedFace

(b)

Y

I|1111 i

Figure 6. Translation Axis Alignment procedures (a) computes the new ipt3. (b) computs
X-axis rotation angle trad from V1 and V2.

4.2.6.4.7 Translation Animation X-Axis Alignment : GAU_flttransadjust

The GAU_flttransadjust serves the same purpose as the GAU_transadjust but uses
different arguments to construct horizontal axis.

GAU_transadjust (vtxpt, fn, ip, thetay)
ivertexpt vtxpt; /* leading vertex for the horizontal axis */

A3I PhaseIII Cockpit Design Editor CSCI Page C-23

vector fn;
icoord ip;
int thetay;

/* normal vector for the attached face */
/* center or reference coordinate */
/* Y-axis rotation angle in order to match Z-axis to face normal */

Instead of converting the horizontal axis from ibead pointer and vertex order,
GAU_transadjust directly form the axis from leading vertex pointer "vtxpt".

4.2.6.4.8 Translation Animation X-Axis Alignment : GAU_icoordadj

Like GAU_flttransadjust, the GAU_icoordadj serves the same purpose as the
GAU_transadjust but use different arguments to form horizontal axis.

GAU_icoordadj (iptl, ipt2, fn, ip, thetay)
icoord ipt 1; /* starting vertex for the horizontal axis */
icoord ipt2; /* ending vertex for the horizontal axis */
vector fn; /* normal vector for the attached face */
icoord ip; /* center or reference coordinate */
int thetay; /* Y-axis rotation angle in order to match Z-axis to face normal */

GAU_icoordadj directly form the axis from two vertices iptl and ipt2.

4.2.6.5 Advanced Display Editor : cdedisp.c

This module contains one file, "cdedisp.c" which can be classified into Initialization,
Toggle Control, and Interface Control (Figure 7). Currently, all displays (Vertical-type
Perspective Display or VPD, 2-D Contour Display, and Radar Sensor Display) are hard coded and
only VPD and Contour Display are fully functional. Nevertheless, the purpose of this module
was to demonstrate how to interface CDE to the next generation of flight instruments.

4.2.6.5.1 Initialization : ADV init
m

ADV_init setup the transformation matrix G_matrix and initialize the viewing window
boundary points. It also format the DMA terrain elevation and 2-D contour arrays by calling
Terrain_init and Contour init procedures. The datafile that is opened for the initialization is:
contour.dat for the binary terrain elevation data and contour.file for 2-D contour information.

4.2.6.5.2 Toggle Control Procedure : ADV_advdisp

ADP_advdisp select the viewing procedure defined by ADVDSP_TYP that enables
different displays to be shown on the same viewing window sequentially.

ADP_advdisp (iql, iq2)
icoord iql; /* viewing window lower left screen coordinate */
icoord iq2; /* viewing window upper right screen coordinate */

4.2.6.5.3 Interface Control : ADV_adspsetup

ADV_adspsetup allows the user to change the viewing attitude angles and position during
the animation. Currently, only the Vertical-type Perspective Display is functional for this utility.

A3I PhaseIII Cockpit DesignEditor CSCI Page C-24

_nifi_dlzafion

ADP init 0
......... ,,o ..

Terrain_init 0
Contour_.init 0

Toggle Control

ADP_advdisp 0
........... ° , ,.,...,o......°

V_pertdisp 0
Contourdisp 0
R pertdisp 0
Aircraft 0
Terrain_draw 0
Contour draw 0

In_rf_eo Conl_'ol

ADP_adspsetup 0

.........
Adpsetup 0
Vertpersp 0
Adpdone 0
Closewindow 0
Motionpersp 0

Figure 7. Procedures comprising each Advanced Display function.

4.2.6.6 Parameter Linker : cdelink.c

The Parameter Linker module is constructed by "cdelink.c" (Figure 8), it is used to setup
the attributes for the animated graphical object. The animation attributes are referenced by "IDs"
instead of absolute coordinates. The major advantage to IDs is that when the user moves the gauge
around in the same attached surface, it is unnecessary to relink the animation attributes. The
Animation Init utility will convert these IDs to absolute world coordinate numbers to performs the
actual 3D transformations. The Parameter Linker can be identified to interface Control Procedures
and Itemize Control Procedures.

4.2.6.6.1 Attribute Linking Control : LNK linkit
u

LNK_linkit 0 is called when "Link Parameter" is selected under the "CDE" menu bar. It

controls the main link window and conforms to the final linking procedure.

LNK_linkit (flag)
char flag; /* = FALSE, create new link */

/* = TRUE, update old link */

A3I Phase HI Cockpit Design Editor CSCI Page C-25

Killparam 0 Operbutton 0 Pushpick 0

Linkparam 0 Killoperwindow 0 Btnbutton 0

Sevenlink 0 Do_set_oper 0 Tsw_setup 0

Onelink 0 Rot_setup 0 Adp_setup 0

Tagonelink 0 Rotapick 0 Adppick 0
Closelinkw 0 Pick..id0 Adprompt_hdl 0

Linkbutton 0 Doneid 0 Vsc_setup 0

Pick_chopper 0 Okid 0 Vscpick 0

Chopperbutton 0 Undoid 0 Vscrompt_hdl 0

Killidwindow 0 Trans_setup 0 Nled_setup

Pick_pararn0 Transbutton 0 Nledpick 0

Parambutton 0 Transpick 0 Nledprompt_hdl 0

Pick_func 0 In2ft0 Pick_mask 0

Funcbutton 0 Prompt_hdl 0 Maskbutton 0

Killfuncwindow 0 Adi_setup 0

Pick_oper 0 Btn_setup 0

Attzibu_ Update Control

LNK_modparam 0

LLnklist Control

LNK_deletesymdb 0
LNK_rmlink 0

Execsymdel 0

Markdeadsym 0

Figure 8. Procedures comprising each Parameter Linker function.

This procedure sets up the animation part of the CDE database structure Dial_infopt[]. This
Dial_infopt [] should cover almost any type of animation. The user should not try to add to or
delete any variable in this structure; instead, the meaning for each variable should be reassigned,
and the corresponding change made to dthe function handler(s) in the Animation Control. For

changes that can be classified as the Itemize Control (add a model parameter to the menu selection
for example), the user should:

.

2.
Declare the new parameter index in the "cdefmt.h".
Add the parameter to the menu handler.

A3I Phase lII Cockpit Design Editor CSCI Page C-26

o

4.
Modify the corresponding function handler in the Animate Control.
Recompile all the programs that relate to the header file "cdefmt.h".

4.2.6.6.2 Attribute Update Setup : LNK_modparam

LNK_modparam 0 is called when the user selects an instrument for animation attributes
updating or examination. This procedure extracts animation attributes from selected instrument and
sets up the static variables and calls LNK_linkit for updating interface control.

LNK_modparam (index)
int index; /* index number for the selected instrument */

4.2.6.6.3 Delete a Single Link : LNK_deletesymdb

This procedure allows users to delete a symdb bead and tree below from the CDE database
structure by clicking the MultiGen delete icon.

LNK_deletesyrndb 0

Make sure you're in the fight mode--A3I bubble is on--before you select the object and
execute the delete command, otherwise the program may core dump. More work needs to be put
into this command.

4.2.6.6.4 Remove Whole Link : LNK rmlink

The LNK_rmlink clears all animation arrays and resets all the animation index.

4.2.6.7 Color Handler : cdecolor.c

The Color Handler is designed to enhance color related operations for the CDE. Figure 9
illustrates the functions of the Color Handler.

4.2.6.7.1 Initialization : CDCH colorinit

The CDCH colorinit 0 defines the IRIS color look-up table and sets-up the "writemask"
bitplanes.

CDCH_colorinit 0

The file loaded by CDCH_colorinit is cdecoior.tbl which contains the RGB information
for the CDE color table.

4.2.6.7.2 Palette Control : CDCH_palette

The CDCH_palette 0 is called when the user issues the CDE Color Palette menu command.
It displays a palette of available colors and also controls the color palette interface.

CDCH_palette 0

The palette window handle functions is Cpalredraw and Cpalcontentproc.

A3I Phase III Cockpit Design Editor CSCI Page C-27

_nifia_zafion

CDCH_eolorinitO
,°°...°,,, ,,,..,,, °°,°,,°,,°°,,°°,..°,

Colormap 0

Color X_on

CDCH_insertcolor 0
... m.,,,,,,,,,..o.°°

Colorit 0

Color In_nsRy Control

CDCH_hi_inten 0
CDCH_lo_inten 0

Modify Color Cont,,'ul

CDCH_modeolor 0
...................... ,.,,,.,,,,, ..

Cmodredraw 0
Cmodgoaway 0
Csetmodcolors 0

I?_ette Control

CDCH_palette0
...............................°°.°°,H•...........................

Figure 9. Procedures comprising each Color Handler function.

4.2.6.7.3 Color Insertion : CDCH insertcolor
w

Ths CDCH_insertcolor procedure is called when CDE Insert Color command is issued by
the user.

CDCH_insertcolor (function)
int function; /* function 0: insert current CDE palette color into selected object */

/* function 1: change back to original color */

4.2.6.7.4 Modify Color Control : CDCH_modcolor

The CDCH_modcolor is called in response to a CDE Modify Color command.

CDCH_modcolor 0

CDCH_modcolor 0 allows the user to change the color components of the current color.
The window displayed by CDCH_modcolor will have a write flag to indicate if the new color table
should be written to disk.

4.2.6.7.5 Color Intensity Control : CDCH_hi_inten, CDCH_lo_inten

A3I Phase III Cockpit Design Editor CSCI Page C-28

CDCH_hi_inten 0 and CDCH Io inten () are called during the animation by the animation
control functions.

CDCH_hi_inten (iriscol)
int iriscol; /* IRIS color index */

CDCH_hi_inten (iriscol)
hat iriscol; /* IRIS color index */

These two procedures allow the user to swap the face colors between the predefine color
pair which can simulate the operations such as lighted switch, warning light, etc..

4.2.6.8 Database Manager : cdepage.c

This following three-part document is written for programmers and software designers
who want to create or modify the CDE descriptive database (Figure 10). The implementation of
the CDE descriptive database is based on MultiGen Data Base Logic and Flight Data Base;
familiarity with these two modules as well as the Interface Manager and the MultiGen Kernel are
necessary ha order to understand this program.

4.2.6.8.0 Database Field Elements Structure

Defhaed as a local structure, these four structures specify what type of information, editable
or noneditable or function pointer, should be displayed on the screen.

/* field definition for getfield routines --- defined in mgfmt.h */
typedef struct {

char type; /* the data type, INT, FLOAT, etc. */
char editflag; /* EDIT, NONEDIT, or READONLY */

} fieldtype, ftarray [1];

/* File Header window information */
static fieldtype cdeheadft [2] = {

STRING, EDIT, /* Database filename */
STRING, NONEDIT /* First console name */

I;

/* Console information window arrangement */
static fieldtype cdeconsoleft [8] = {

STRING, EDIT,
STRING, EDIT,
STRING, NONEDIT,
STRING, NONEDIT,
STRING, NONEDIT,
STRING, NONEDIT,
STRING, NONEDIT,
STRING, NONEDIT

};

/* name */
/* description */
/* MultiGen ID */
/* pre console */
/* next console */
/* centroid x */
/* centroid y */
/* centroid z */

A3I Phase III Cockpit Design Editor CSCI Page C-29

FMT_setup 0

FMT setproc0
...°..........................o°..,°om._._.,.. """

Fmtbutton 0 Donesgeom 0 UndoPsurf 0

Fmtinit 0 Oksgeom 0 Fmthuman 0

Fmtsetup () Undosgeom Donehuman 0

FMTcomment 0 Fmtpsurf 0 Okhuman 0

Fmtsgeom 0 Psurf_cvrt0 Undohuman 0

Sgstart0 Psurf_update 0 Human_cvrt 0

Sgupdate 0 Donepsurf 0 Console_cvrt()

Sgcont 0 Okpsurf 0 Panel_cvrt 0

Control_cvrt()

Set_refcoord0

Matrix_setup 0

Relative_coord0

Fill_relbuff0

Fill_absbufT0

Menu Commend Handlers

CPG_sel_set_attach 0

CPG_attach 0

CPG_detach 0

CPG_mod_att 0

CPG_newattr 0

CPG_newsymdb 0

CPG_cresym 0

Editattr0

Setsymlevel 0

Neighborhood Analysis

NGA_setup 0

Serbutton 0

Sersetup 0
Ctrbutton0

Pick_centroid0

Donepick 0

Okplck 0

Undopick 0
Cal_all0

Cal_centrold_one0

Cal_symdb_one 0

Cal_bead_all0

Cal_bead_one 0

Cal_bound_one 0

Page Command Control

CPG_pagegeneral 0

......,,..,...

Cdeheaderbtns 0

Cdeconso]ebtns 0

Cdepanelbtns 0

Cdecontrolbtns0

Selectsym 0
Pick_bound 0

Donebound 0

Okbound 0

Undobound 0

Changeshape 0

Drawshape 0

Changetypes 0

Drawtypes 0

Field_llt Utilities

CPG_getfieldtype 0

CPG_getfield 0

CPG_getstring 0

CPG_putfield 0

CPG_movestr 0

Figure 10. Procedures comprising each Database Management function.

A3I Phase HI Cockpit Design Editor CSCI Page C-30

/* Panel information window arrangement *!
static fieldtype cdepanelft [12] = {

STRING, EDIT,
STRING, EDIT,
STRING,
STRING,
STRING
STRING
STRING
STRING
STRING
STRING

NONEDIT,
NONEDIT,
NONEDIT,
NONEDIT,
NONEDIT,
NONEDIT,
NONEDIT,
EDIT,

GENERAL, EDIT,
GENERAL, EDIT,

};

]* name *[
/* description */
/* MultiGen ID */
/* CONSOLE name
/* pre panel */
/* next panel */
/* centroid x */
/* centroid y */
/* centroid z */
/* normal height */
/* shape */
/* type*/

*/

/* Control information window arrangement */
static fieldtype cdecontrolft [10] = {

STRING, EDIT,
STRING, EDIT,
STRING, NONEDIT,
STRING, NONEDIT,
STRING, NONEDIT,
STRING, NONEDIT,
STRING, NONEDIT,
STRING, NONEDIT,
STRING, NONEDIT,
STRING, NONEDIT

};

!* name */
/* description */
/* MultiGen ID */
!* CONSOLE name */
!* PANEL name */
]* ple control */
/* next control */
/* centroid x */
/* centroid y *!
!* centroid z */

4.2.6.8.1 Structure Pointer : CPG_getfieldtype

This function is called when the program tries to locate a selected level of the database
structure pointer.

CPG_getfieldtype (level, ft)
int level; /* symdb level (header, console, panel etc) */
fieldtype **ft; /* return as pointer into fieldtype array */

4.2.6.8.2 Field Format Control : CPG_getfield

The CPG_getfield is called when the user wants to know the size of the selected level and
feld.

long CPG__getfield (symdb, level, field)
dialparampt symdb; /* symdb bead pointer */
int level; /* database level */
int field; /* field order in the datafield structure */

Because the current database uses string only, that is, only length of string is returned.

A3I Phase III Cockpit Design Editor CSCI Page C-31

4.2.6.8.3 String Field Control : CPG_getstring

This function fetches information from a selected symdb bead and converts it into a defined

length of string.

CPG_getstring (symdb, level, field, cnt, string)
dialparampt symdb; /* symdb bead pointer */
hat level; /* database level */
hat field; /* field order in the datafield structure */
hat cnt; /* not used */
char *string /* converted string pointer */

4.2.6.8.4 Store Editable String to Database : CPG_putfield

This function verifies an input field string, if valid, stores the new field value into database.

CPG_putfield (topib,
ibeadpt topib;
dialparampt symdb;
hat level;
hat field;
int val;

symdb, level, field, val)
/* not used */
/* symdb bead pointer *!
/* database level */
/* field order in the datafield structure */
/* input string */

The verification is done by calling CPG_movestr procedure.

4.2.6.8.5 Verify the Editable String : CPG_movestr

This procedure is called when the user wants to make sure the input editable string is a less
defined field size; if not, null string returned.

CPG_movestr (to, from, len)
char *to; /* verified output string */
char *from; /* input string */
int len; /* defined string length */

4.2.6.8.6 GENERAL Field Handler : CPG_pagegeneral

This procedure is called when the user mouse on the attribute field when GENERAL is
defined in the fieldtype structure. Currently, this utility only appears on the panel level, it will
rotate a list of shapes or types for the panel.

CPG_pagegeneral (w, delta, size, level, field, editflag)
windowpt w;
point *delta;
point *size;
int level;
int field;
int editflag;

/* attribute window pointer */
/* ieftbottom coordinate for the given field *!
/* rightbottom coordinate for the given field */
/* database level */
/* field number in the structure */
/* not used */

4.2.6.8.7 Modify Attributes Window Control : CPG_mod_att

A3I PhaseIII Cockpit Design Editor CSCI Page C-32

The CPG_mod_att is called when the user issues the "Modify Attribute" command under
"Structure" menu bar, and the "A3r' bubble is turned on.

CPG_mod_att (w)
windowpt w; /* top window pointer */

This procedure will display the CDE descriptive database attribute window for the selected
symdb, if nothing is selected, than the header attribute window will be displayed.

4.2.6.8.8 New Attributes Window Control : CPG newattr

In the previous command, if the selected bead has not yet be defined by the CDE database,
than the CPG_newattr will be called to prompt the user on whether a CDE database link for that
bead must be created.

CPG_newattr (bead, level)
ibeadpt bead; /* selected ibead pointer */
int level; /* database level */

4.2.6.8.9 Symdb Structure Init : CPG_newsymdb

This procedure will return a new and initialized symdb database bead.

dialparampt CPG_newsymdb 0

4.2.6.8.10 Create New Link to Symdb Structure Tree : CPG_cresym

The CPG_cresym is called when the user wants to create a link for a given symdb.

CPG_cresym (symdb, level, uplevel, superbead)
dialparampt symdb; /* given symdb pointer, can be NULL */
int level; /* database level */
dialpammpt uplevel; /* parent symdb pointer, can be NULL */
dialparampt superbead; /* super bead pointer */

4.2.6.8.11 Attach Link to Parent Symdb Structure Tree : CPG attach
m

This procedure is called when the user issues the "Attach" command under the "Structure"
menu bar with the "A3I" bubble on.

CPG_attach (sbead)
dialparampt sbead; /* given child symdb pointer */

This procedure will first verify the attached database level and parent bead, then clear the
old database link for the given symdb, and create a new link for the given symdb.

4.2.6.8.12 Detach Link from Parent Symdb Structure Tree : CPG detach
w

The CPG_detach is called when user clicks on the "Structure" menu "Detach" command
with the "A3I" bubble on. This procedure will unlink the selected symdb from its parent and
sibling.

A3I Phase III Cockpit Design Editor CSCI Page C-33

CPG_detach 0

4.2.6.8.13 Set Parent Symdb : CPG_sel_set_attach

The CPG_detach is called when user clicks on the "Structure" menu "Set Parent" command
with "A3r' bubble on. This procedure will set the first selected symdb as parent bead.

CPG_sel_set_attach 0

4.2.6.9 Database Manager : cdefmter.c

The purpose for this file is to output different database formats for other applications.
Currently, S-geometry, PSURF, and CDE descriptive database three type of databases can be
output from MultiGen environment.

4.2.6.9.1 Selection Window : FMT_setup

This procedure is called when the user issues a CDE "data format O/P" command. It
displays a selection window of available data formats and prompts the user for selection input.

FMT_setup 0

4.2.6.9.2 Control Window Processes : FMT_setproc

This procedure will setup the function handlers that response to the UNDO, OK, and
DONE commands in the control window.

FMT_setproc (donefunc, okfunc, undofunc, msg)
int (*undofunc) 0; /* called when UNDO button invoked */
int (*okfunc) 0; /* called when OK button invoked */
int (*donefunc) 0; /* called when DONE button invoked */
int msg; /* message ID */

4.2.6.10 Database Manager : cdeneig.c

This program module performs neighborhood analysis for the CDE descriptive database.
NGA_setup is called when the user clicks on the "Neighborhood" button in the attribute window.
This will cause a window to be displayed and prompt the user for input selection. After the user
defines all the variables, the program will compute the distance between the given symdb and
every symdb that exists in the same datalevel with the given symdb. For the symdbs where the
distances are smaller than the defined radius, their names will be displayed on the viewing
window.

5.0 Notes

5.1 Miscellaneous

The purpose of this section is to include any additional information which would be beneficial in
understanding your CSCIs design, implementation, or operation. This could be notes from

A3I Phase III Cockpit Design Editor CSCI Page C-34

meetings or conferences, results of testing, and any unique features in the software that have been
included to streamline future enhancements, such as special modularity "hooks".

5.2 Limitations

Discuss any limitations of your CSCI, as well as any requirements which we not met during this
phase.

5.3 Future Directions

Describe any future enhancements or modifications which should be made to your CSCI. Use you
experience, "lessons learned", and domain knowledge to suggest what could be pursued during
further development.

6.0 Users Guide

The purpose of the user's guide is to provide end users (cockpit designers) with the
necessary information to effectively operate the CDE.

6.1 Introduction

It would not be advisable for people to work on the CDE without prior knowledge of
MultiGen. Getting the most out of the CDE isn't easy. To benefit from this document, you should
have a basic understanding of MultiGen. You should know how to use MultiGen to create, view,
and modify objects.

6.2 Related Documentation

First time users of MultiGen or the CDE should familiarize themselves with the MultiGen

Modeller's User's Guide before attempting to use the system. The detailed instructions for using
the CDE utilities are listed in this chapter.

6.3 The Structure of CDE Hierarchical Database

Both the MultiGen and CDE databases are hierarchical. The hierarchical database system is
based on records that are organized into inverted tree structures. There is a single "root" record,
with sub-records associated with the root. Each sub-record has its sub-records, and so on. All su-
records on the same level have the same format, but formats can differ from level to level. Each
particular "parent" record may have many "child" records, but a child record has only one parent
record. Figure 11 shows a small sample from CDE hierarchical database.

The dotted line represents the sibling relationship. Currently, all objects animated on the
CDE are limited to the Control Level. Some instruments contain there own hierarchical structure.
For example, the HSI, one cannot compute the final location of the Course Deviation Bar without
first computing the Azimuth Indicator. In this case, when the designer creates the graphical object
of HSI, he should make sure the Course Deviation Bar is the child or subbead of the Azimuth

Indicator. During the CDE animation, the children transformation are relative (instead of
independent) to their parent. Generally speaking, it is always a good practice to construct each

A3I Phase HI Cockpit Design Editor CSCI Page C-35

instrument/gauge in MultiGen's "Cluster" level and each "movement" (animated object) in the
"object" level. For some types of gauges which have more than three hierarchical levels, like HSI,
use the MultiGen "Subface" to generate the extra parent-child relationship.

RleHeader I

I I...................................i I

AltitudePointer t'J DigitalReadout#I

PanelLevelI

ControlLevel l

Figure 11. Sample structure for CDE hierarchical database.

6.4 CDE Menu Commands

As shown in Figure 12, the CDE has fourteen pull-down menu commands.

6.4.1 Open Coord. File

When the user issues this command the program brings up a temporary window that
contains the name of the last requested file in highlighted text. Press RETURN to confirm, or edit
the filename then press RETURN. If the requested file exists, the data will be converted to the
MultiGen i-format and the object wilt be drawn on the active window. If necessary, you can edit
the extracted graphic object by using the MultiGen commands. When you are satisfied with your
results, use the MultiGen copy and paste commands to store the new object in the database.

6.4.2 New Gauge

New Gauge command pops up a menu that contains a list of the predefined instruments.
Select the desired instrument by clicking on the bubble then clicking the "OK" button. For each
selection, a pop-up menu appears on the screen. Type in the appropriate information using the
normal text editing conventions. After the user clicks on the "SHOW" button, the edit control
window appears on the upper-left of MultiGen desktop. This control window provides

A31 Phase III Cockpit Design Editor CSCI Page C-36

instructions on the gauge paste procedures. The first instruction is to select the gauge/instrument
center. Choose the center by pointing the cursor to the desired location and clicking the left mouse
button. The edit control window then prompts for the zero alignment point (normal rest position
for the pointer), depress the left mouse button and drag the dotted reference line to align with the
pointer, then release the mouse button. After you click the "done" button in the edit control
window and a construction instrument will be pasted on the active database window. Click
"UNDO" to delete the pasted instrument or click the "DONE" button to store it in the database.

Info IK) TextWindowsGraphicsStructureSelect Color DMA Animation

- , C0ckpit.dbf

N, -=,=
oFeet olnches
oMG Ok31
o CursoroTablet

Reference
X
Y
Z

oCurrent

oDelta

oDistance
FrzX_ynzo

[]
J

MmB Utility Cluster]
OpenCoord.File
NewGauge
AnimationInit
LoadUnkFile _R
SaveUnkFile
LinkParameter
ColorPalette
InsertColor
Modih/ Color
ModAttributes
DataFormatO/P
ADSPSetup
AdvancedDisp.

Figure 12. CDE pull-down menu commands.

6.4.3 Animation Init

Animate lnit computes the 3D animation data (i.e. transformation matrix) for each
instrument in the link list which is created by Load Link File and/or by Link Parameter commands.
Whenever the link list or the instrument physical layout has been altered, the user has to execute
this command to set-up the new transformauon matrices.

6.4.4 Load Link File

Load Link File brings up a temporary window that contains the default filename. Press
RETURN to confirm, or enter the new filename then press RETURN. This command loads the

A3I Phase III Cockpit Design Editor CSCI Page C-37

linkfile from the disk and then appends it to the CDE parameter link list. After you load a new
linkf'de you have to execute Animate Init to update the 3D animation data.

6.4.5 Save Link File

Save Link File brings up a temporary window that contains the name of the last requested
linkfile as selected text. Press RETURN to confirm, or edit the filename and then press RETURN.
This command will save the current CDE parameter link list to disk.

6.4.6 Link Parameter

6.4.6.1 Chopper

The user can use this function to select one of the helicopters from the list to be the target.
CDE will fetch the simulation system/aero dynamic data from this helicopter.

6.4.6.2 Parameter

A list of available system/aero dynamic parameters is provided by the CDE. You can pick
one of the parameter as the input variable for the instrument.

6.4.6.3 Function Handler

Currently seven mapping functions are available for the user.

6.4.6.3.1 Linear Mapping Function

F (X) -- A * X + C A, C are constants

This is the most commonly used function. Output is directly proportional to the input
weighted by a scale factor "A" and an offset factor "C". The mathematical relationship of this
function is shown below.

A C
0.01
0.1
1

10
100

6.4.6.3.2 Periodic

x F(X)
0 14964.2 149.642
0 14964.2 1496.42
0 14964.2 14964.2
0 14964.2 149642.
0 14964.2 1496420.

Mapping Function

F(X) = C*(X-A*((int)(X/A))) A, C are constants.

This function handle those inputs which function value recurs at a regular interval, such as
heading angle. The period (repeat interval) is defined by "A" and the output is scaled by "C".
The mathematical relationship of this function is shown below.

A* C* X F (X)
120 1 14964.2 84.2

A3I Phase III Cockpit Design Editor CSCI Page C-38

200 1 14964.2 164.2
360 1 14964.2 204.2
400 1 14964.2 164.2
480 1 14964.2 84.2
600 1 14964.2 564.2

*note: in this function C is the scale factor and A is the period.

6.4.6.3.3 Truncate Mapping Function

F(X) = (int)(A*X)+C A, C are constants.

Similar to the Linear Function, but the fraction part of scaled value is discarded. The
output is the integer portion of the scaled value plus the offset "C". The mathematical relationship
of this function is shown below.

A C X F(X)
1 0 14964.2 14964

10 0 14964.2 1496
100 0 14964.2 149

1000 0 14964.2 14
10000 0 14964.2 1

100000 0 14964.2 0

6.4.6.3.4 Linear Digit Mapping Function

F(X) = (X/A-(int)(X/A))*10+C A, C are constants.

This function was specially designed for the last digit (linear digit) of Drum Digit display.
It works like a reversed truncate function; it removes digits located on the left of a specific digit for
a given number value. The constant "A" decides which digit is the reference digit, after the
conversion, the reference digit will be placed on the ones position.

A C X F(X)
1 0 14964.2 2

10 0 14964.2 4.2
100 0 14964.2 6.42

1000 0 14964.2 9.642
10000 0 14964.2 4.9642

100000 0 14964.2 1.49642

6.4.6.3.5 Drum Digit Mapping Function

TMPI(X)= (X/A-(int)(X/A))*10+C
TMP2 (X)= (int)TMP1 (X)
TMP = TMP1 (X)- TMP2 (X)

A, C are constants.

F(X)={
TMP2 (X) + 10" (TMP(X)- 0.9)
TMP2 (X) + 10" (TMP (X) + 0.9)

if TMP (X) > 0.9
if TMP (X) < -0.9

A3I Phase IlI Cockpit Design Editor CSCI Page C-39

TMP2 (X) if-0.9 < TMP (X) < 0.9

This function is specially designed for the Drum Digit display. It is possible to extract
specific digit(s) of a given number value. The output value depends on the digit to its fight, if that
digit value is between 0 and 9, than the function returns a single digit, otherwise, a sum of a
handover fraction and that single digit is returned.

A c x F(X)
1 0 14964.2 2

10 0 14964.2 4
100 0 14964.2 6

1000 0 14964.2 9
10000 0 14964.2 4.642*

10000 0 18956.23 8.5623*
100000 0 14964.2 1
*note: the handover fraction is composed by the digits on the right-side of digit "9".

6.4.6.3.7 Natural Logarithmic Function

F(X) = A*ln(X)+C A, C are constants.

This natural logarithmic function allows user to view a great range of data in a reasonably
small scale. The value for X should be positive, however, the CDE will automatically switch to
the linear function if X becomes negative.

A C X F(X)
1 0 -1.4964 -1.4964
1 0 1.4964 0.4031
1 0 14.9642 2.7057
1 0 149.642 5.0082
1 0 1496.42 7.3108
1 0 14964.2 9.6134

6.4.6.3.8 User Defined Function

6.4.6.4 Operation

The Operation and Function Handler are related to each other. The Function Handler
tunes the input parameter to the Device Normal Data (DND). It is the DND, not the input
parameter, thatdrives the Operation. It's important that the user clearly understands the output of
the Function Handler before using this operation. Currently, eight operations are available for the
animation purposes.

6.4.6.4.1 Rotation

This function can be used to perform any rotation of a given object. The menu definitions
are given below.

A3I Phase III Cockpit Design Editor CSCI Page C-40

Starting Angle: Zero degree means the original pointer position is the starting
position, any positive X value will cause the pointer to rotate
clockwise X degrees to the starting position.

Sweep Area: This is the range. This value should represent the number of
degrees you expect the pointer to rotate "clockwise" when input
DND reaches the Maximum Limit.

Maximum Limit: This is the value when pointer at the "Starting Angle + Sweep Area"
location.

Minimum Limit: This is the value of the pointer at the starting angle (initial location).

Rotation Center: ID for the Center point of the rotation.

Movement ID:

Reference Face ID:

6.4.6.4.2 Translation

The graphic ID for the object you want to rotate.

The surface where you perform the rotation.

You can use this function to perform any translation for a given object. The definitions for
the menu items are listed below.

Down +--+ Up: Click this bubble if you want the object to move upward when the
DND increases.

Left +--+ Right: Click this bubble if you want the object to move to the right when
the DND increases.

Displacement:

Corresponding rang:

The reference interval for the range.

The DND value that cause the object to travel the length of previous
defined Displacement.

Instrument Center ID: This can be any point, except those two points in the Horiz.
Alignment Axis, that reside in the same plane with the Movement.

Horiz. Alignment Axis:This axis sets up the horizontal reference axis. Because the nature
of the graphics implementation, always pick the lower line as axis.

Movement ID:

Reference Face ID:

6.4.6.4.3 ADI

The graphic ID for the object you want to rotate.

The surface where you perform the rotation.

Attitude Display Indicator (ADD: This operation is designed for ADI only.

Pitch Ladder Displacement: The physical size of the ADI's pitch ladder.

A3I Phase HI Cockpit Design Editor CSCI Page C-41

Corresponding Pitch Angle: This is the pitch angle range for the previous defined Pitch
Ladder Displacement.

Rotation Center: 113for the Center point of the rotation.

Horiz. Alignment Axis:This axis sets up the horizontal reference axis. Because of the
nature of the graphics implementation, always picks the lower line
as axis.

Movement ID: The graphic ID for the object you want to rotate.

Reference Face 113:

6.4.6.4.4 Pushbutton

The surface where you perform the rotation.

This function simulates a lighted pushbutton, it also can be used to simulate warning lights.

Pushbutton FACE ID: The graphic ID for the top surface of a pushbutton or the
cover of the warning light. Make sure the color for that face
belongs to the CDE color pair.

Switch Value:

High intensi ABOVE..:

High intensi BELOW..:

6.4.6.4.5 Toggle Switch

The critical DND value will change the state.

When the DND value is above the Switch Value, the upper
color of that color pair will be displayed. Otherwise, it will
display the lower color.

When the DND value is below the Switch Value, the upper
color of that color pair will be displayed. Otherwise, it will
displayed the lower color.

A two or three state toggle switch can be simulated by this function.

Flip Up Value: When the DND value is above this setting, the toggle switch will flip
up.

Flip Down Value: When the DND value is below this setting, the toggle switch will
flip down. If the Flip Up and Flip Down values are the same, than
it is a two state toggle switch, otherwise it is a three state toggle
switch. When the value of a three stage toggle switch is between
these two settings, its handle will remain the same.

Instrument Center lD: ID for the Center point in the base of the toggle switch.

Alignment Axis: This axis sets up the horizontal reference line. Because of the nature
of the graphics implementation, always picks the lower line as axis.

Movement ID: The graphic ID for the handle of the toggle switch.

A3I Phase III Cockpit Design Editor CSCI Page C-42

Attached Face ID: The base of the toggle switch.

6.4.6.4.6 Advanced Disp

This operation will define the window location for the Advanced Display.

Attached Face ID:

Lower Left Vertex ID:

Upper Right Vertex ID:

6.4.6.4.7 Vertical Scale

The rectangular window Face ID.

The point locates in the lower left of the window.

The point locates on the upper fight of the window.

For this function the vertical scale has to be in full scale position when created.

Maximum Limit: This is the value when the scale reaches the maximum mark.

Minimum Limit: This is the value when scale reaches the minimum mark.

Scale ID: The ID for the scale movement.

Upper Left Vertex ID:

Upper Right Vertex ID:

6.4.6.4.8 Numerical LED

The point locates in the upper left of the scale movement.

The point locates on the upper fight of the scale movement.

CDE's LED Operation always displays the "ones" digit within the DND number value. If
you want to display the "hundredth" digit for the input parameter, define the function handler as the
Linear Function with A=0.01, C--0, this will make the DND's "ones" place equal to the input
parameter's "hundredth" place giving you the desired results. Make sure to follow the segment
order illustrated in the menu window.

6.4.6.4 Writemask

The Writemask utility controls the CDE's writemask flag for this object.

6.4.7 Color Palette

Color Palette opens a window containing the CDE color palette. To select a color, position
the cursor to the desired color then click the left mouse button. The selected color will appear in
the current color block at the left of the palette, along with the color number. The middle mouse
button controls the vertical movement of the cursor, the right mouse button controls the horizontal

movement. This palette includes Erasable colors, Unerasable colors, and Unerasable color pairs.
Normally, there is no difference between the Erasable and the Unerasable colors. When the CDE's
writemask flag is TRUE, however, the Unerasable colors can cover-up the Erasable colors. With
this property in mind the user can perform some "windowing" effect animations such as ADI and
Drum Dial gauges.

6.4.8 Insert Color

A3I PhaseIII Cockpit DesignEditor CSCI Page C-43

This command changes the color of the selected object(s) with the newly selected color.

6.4.9 Modify Color

Modify Color brings up a window containing the current color box and three color bars.
Drag the tabs in the red, green, or blue color bars, and the change will be reflected in the current
color box, color palette, and database window. If the check mark is on in the "Write File" box, the
changed color palette will be written to disk when the color modification window is closed.

6.4.10 Mod Attribute

ModAttributes allows the user to browse through the CDE link list. The viewing window
contains the data base ID and title of every instrument in the link list. To view or modify the link
list, f'n'stselect the desired item in the viewing window and click on the "Selected Instrument" box.
The rest of the procedures are the same as the Link Parameter.

6.4.11 Data Format O/P

6.4.12 ADSP Setup

ADSP Setup brings up a control window on the screen, which is used to control the view
point for the Vertical-type Perspective Display. The user can change the viewing angles, viewing
distance, prediction time, and scaling factor. The changes are reflected in the Advanced Display
window.

6.4.13 Advanced Disp

Advanced Display toggles the scene in the Advanced Display window from No-view to
Vertical-type Perspective Display to Motion Perspective Display to Radar Display.

6.4.14 Unlink All

Unlink All removes all the symdb links, clears all the animation arrays and resets all the
animation indexes.

6.5 Error Messages and Diagnostics

The CDE software sounds a bell when an error occurs. The user can check the cause of this

error by executing the "Last Error Msg" command under the Info Menu. "Last Error Msg" displays
the last error message. In addition, the Status Window command under the Info Menu can open a
window that displays a log of events that have occurred during the current edit session.

Annex D

Army-NASA Aircrew/Aircraft Integration Program

A3I

Software Detailed Design Document:
Anthropometric Manikin Model "Jack"

prepared by

Gretchen Helms

December 1988

Table of Contents

1.0 INTRODUCTION .. D-1
1.1 Identification .. D-1

1.2 Scope .. D-1
1.3 Purpose ... D-1

2.0 RELATED DOCUMENTATION .. D-2

2,1 Applicable Documents ... D-3
2.2 Information Documents ... D-3

3.0 REQUIREMENTS AND DESIGN APPROACH .. D-3
3.1 Requirements and Rationale .. D-3
3.2 Hardware Environment ... D-5
3.3 Software Environment .. D-5

4.0 DETAILED DESIGN DESCRIPTION .. D-5
4.1 Organization .. D-5
4.2 Unit Detailed Design ... D-5

4.2.1 Demo Directory ... D-5
4.2.2 Psurf Files ... D-6
4.2.3 Environment Files .. D-7
4.2.4 Animation Fries ... D-8

5.0 NOTES ... D-9
5.1 Limitations .. D-9
5.2 Future Directions ... D-9

6.0 USERS GUIDE ... D-10

6,1 Compiling Jack ... D-10
6.2 Porting Jack .. D-12
6.3 Modes of Operation .. D-12
6.4 Updating Jack .. D-13
6.5 Creating Animation Scripts ... D-14
6.6 Generating Movements Automatically ... D-16
6.7 Downloading from CDE .. D-16
6.8 Jack Installation Instructions ... D-16

7.0 APPENDICES .. D-19

A. Jack Directory Detailed Breakdown .. D-19
B. Sample Environment File: radiosites.env ... D-24
C. Jack Demo Instructions .. D-29
D. "Makescript.c", Movement Generating Program ... D-32

A3I Phase IIl Jack CSCI Page D.1

1.0 INTRODUCTION

1.I Identification

This document establishes the requirements and detailed design of the Jack Computer
Software Configuration Item (CSCI), which forms a part of the A3I Computer Program System.
Descriptions of the detailed processing requirements, structure, I/O, and control are provided for
each lower level Computer Software Component (CSC),unit, or function contained within the
CSCI.

1.2 Scope

This document describes the function, composition and use of the Jack software used in
Phase III of the A3I simulation. Since Jack has its own set of detailed user's and programmer's
manuals published by UPenn, this document will complement such data and describe the files
created for A3I, along with instructions for porting, recompiling and updating Jack.The document
assumes that the reader is familiar with the UNIX operating system, the C programming language,

and animation techniques.

1.3 Purpose

Jack, the software described within this document, is used to observe how a human
mannequin interacts with its environment and what effects body types will have upon performance
of a task. Jack comes with a variety of different body types pre-defined and known to the system,
both male and female bodies, ranging from the 5th to 95th percentile.
Each mannequin is fully articulated and manipulative and reflects the joint limitations of a normal
human. Jack is used to generate the wireframe and solid displays of a pilot with a cockpit created
using the A3I Cockpit Design Editor and performing reaches. Jack was developed at the
University of Pennsylvania under the direction of Dr. Norman Badler, while implementation for
the A3I Project was done by Gretchen Helms. Jack currently runs on the IRIS 4D70 Turbo
graphics workstation running 4Sight and System 3.0, distributed by Silicon Graphics. The
software is written in C, with slight modifications that provide for cross-machine communication

with the Symbolics 3675.

As indicated in Figure 1, the current Jack software ineracts with a number of A3rs
computers, files, and system programs, as well as the user. The primary purposes of Jack are: I)
to create or modify an environment in which a mannequin may be placed, and 2) to observe the
interaction of the mannequin with the environment. Environments are not limited to that of a
helicopter cockpit, nor is the mannequin limited to the cockpit. Any. environment can be created,
and any number of mannequins can be placed anywhere in that envtronment.

To aid in analyzing how well the mannequin works with its environment, two tools are
particularly useful:

• Animation Facilities
Jack allows the user to create a file which contains a sequence of commands that Jack

executes. By commanding Jack to execute body movements, the movements of the pilot in the

A3I Phase III Jack CSCI Page D-2

cockpit can be duplicated. Furthermore, by attaching the view of the Jack environment to the eye
of the mannequin before executing the animation script, the program displays an environment
perspective corresponding to what the mannequin would see while moving in the cockpit, allowing
conclusions to be made about cockpit occlusion and visibility.

• Reach Facilities

This facility causes the mannequin to move a specified portion of its anatomy to a pre-
chosen point in space, reporting back the final distance from the goal site. It is neccessary to pre-
pick the sites the mannequin will move to before starting a reach. The success or failure of the
mannequin to reach a site helps in analyzing problems with the pilot's size and other constraints.

Symbolics 3675

SymbolicModelling
.-,_.I

/
Task
Decomp. !

MissionSim. i

Commands Tto move

User I
• input I

, t
I IRIS 4D

Ethernet

Reach/
Occlusion

Evals

I IRIS
I JRIsl

3120

CDECSCI

Cockpit
env. _ r

Figure 1. Jack/A3I Workstation Interaction

2.0 RELATED DOCUMENTATION

A3I PhaseIII Jack CSCI Page D-3

2.1 Applicable Documents

Silicon Graphics Inc., IRIS User's Guide, Volume I and II, Version 3.0, Mountain View,
California, 1986.

Cary B. Phillips, Jack User's Guide, Version 2.0, Computer Graphics Laboratory,
Department of Computer and Information Sciences, University of Pennsylvania, Philadelphia,
Pennsylvania 19104-6389, September 12, 1988.

Cary B. Phillips, Programming with Jack, Second Edition, Jack Version 3,
Computer Graphics Laboratory, Department of Computer and Information Sciences,

University of Pennsylvania, Philadelphia, Pennsylvania 19104-6389, June 9, 1988,

Stephen G. Kochan, Programming in C, Hayden Books, 4300 West 62nd St,
Indianapolis, Indiana 46268, 1988

Teh-Ming Hsieh, A3I Phase III CDE Software, A3I Project, NASA
Ames Research Center, February 1989.

Huimin Chiu, A3I Phase III Flight Dynamics Guidance, A3I Project, NASA Ames
Research Center, February 1989.

2.2 Information Documents

Simulating Personnel and Tasks in a 3-D Environment, Progress Report NO. 32,
University of Pennsylvania, Department of Computer and Information Science, School of
Engineering and Applied Science, Philadelphia, PA 19104- 6389, September 20, 1988

Norman I. Badler, A Representation for Natural Human Movement, MS-CIS-86- 23,
Grahpics Lab 13, University of Pennsylvania, Department of Computer and Information
Science, School of Engineering and Applied Science, Philadelphia, PA 19104-6389

Dr. Norman Badler, Modeling and Animating Human Figures in a CAD
Environment, MS-CIS-86-88, Graphics Lab 14, University of Pennsylvania,
Department of Computer and Information Science, School of Engineering
and Applied Science, Philadelphia, PA 19104-6389

School

Jeffrey Esakov and Norman I. Badler, An Investigation of Language Input and
Performance Timing for Task Animation, MS-CIS-88-87, Graphics Lab 25,
University of Pennsylvania, Department of Computer and Information Science,
of Engineering and Applied Science, Philadelphia, PA. 19104- 6389

3.0 REQUIREMENTS AND DESIGN APPROACH

3.1 Requirements and Rationale

A3I PhaseIII Jack CSCI PageD-4

The Jack CSCI fulfills a requirement for a package allowing graphic three dimensional
representation of a human's interaction within his environment. Jack represents the most advanced
human modelling system available that can perform the tasks required by our workstations. At the
time A3I came into existance, Jack was substantially underway and was an obvious choice for
A3I.

The Jack CSCI was developed and used with at least these goals in mind:

• To create and/or alter 3D geometric models of environments within which a
mannequin would interact.

• To provide a means of looking at the interaction between the mannequin and
the environment the mannequin is in.

• To provide helicopter cockpit designer(s) with a dynamic, visual tool for
evaluating the pilot's performance in terms of reach, fit, view and timing under a
variety of conditions.

The requirements needed for the model to meet the above stated objectives are:

• A graphical anthropometric representation of the human pilot which can exhibit
human-like movement of body segments(s). The movement should reflect constraints
imposed on the pilot by flight gear, helicopter vibration, force in flight, etc.

• A graphical representation of the helicopter cockpit with which the animated
figure can interact.

• The ability to generate a full range of body types, sizes and masses, each of
which can be tested for reach and fit.

• A system which can be integrated into the A3I System in terms of both
hardware and software compatibility.

• A dynamic model for describing pilot movement so that the tasks used to
describe a helicopter mission in an A3I simulation can also serve as input to this
pilot model. The created animation should playback proportionally to the time

for the physical task.
allotted

• A method to define both function and postition of each item on the control panel
and to relay these descriptions to the animation being created.

_, Adequate documentation and software systems configuration which makes the
addition of new features, needed modifications or application dependent changes
possible.

The aspects of the IRIS 4D70GT important to Phase III development were: a fast graphics
engine in an inexpensive workstation; an extensive library to exercise the engine; a UNIX
program development environment, with tools that are widely used and that therefore require little
learning for those who have used a UNIX system before; and a relatively powerful CPU for the
price (a RISC-based processor with floating-point accelerator).

A3I Phase III Jack CSCI Page D-5

3.2 Hardware Environment

The IRIS 4DGT as configured for this project contains a RISC-based central processing
unit, a floating-point accelerator for the CPU, 12-megabyte program memory, a frame buffer or
image memory of 1024x1024x32 bits, a geometry engine for 3D coordinate transformations, a
proprietary microcoded display processor and frame-buffer controller, a 19-inch 60 Hz non-
interlaced 1280x1024 resolution RGB color monitor, an Ethemet interface with TCP/IP and NFS

softwares, a keyboard and a mouse for user input, and two 440-megabyte disk drives.

Of the above mentioned hardware, the most important one is the combination of the
geometry engine and display controller in the graphics pipeline which provides high speed
rendering. Several other elements are also important. The Ethernet controller and A3I
Communications software make possible the interfacing of a Symbolics 3675 and the IRIS without
special purpose hardware. The integration of the IRIS graphics library, GL2, with input devices,
including a mouse, a button box and a dials box, make it possible to use these devices easily by
calling library functions only. Finally, the large disk drives have proved useful for storing sizable
quantities of graphics data and code.

3.3 Software Environment

The most important elements of the IRIS 4D70GT software environment are :

• A general-purpose, easy-to-use graphics library, the IRIS Graphics Library
II (GL2).

• A standard Ethernet interface protocol (TCP/IP).

• The UNIX V.3 operating system with Berkeley 4.3 and Silicon Graphics
enhancements, a C compiler, a development/debugging environment integrated

the C compiler and several hundred UNIX tools.

with

4.0 DETAILED DESIGN DESCRIPTION

4.1 Organization

4.2 Unit Detailed Design

The following section details each file or directory created by A3I personnel for use with Jack, or
changes to the Jack source code that have been made by A3I.

4.2.1 Demo Directory

A3I Phase HI Jack CSCI Page D-6

The/usr/local/upenn/demo directory serves as the space where demo and work files are developed
and stored. A file called Index exists, detailing each file in the directory and what it's purpose or
contents are. It is strictly up to the user to edit and update the Index file.

Each file in the demo directory has a specific suffix attached to it. The meanings of the suffixes are
as follows:

.pss This is a psurf file, the most basic of the files Jack uses. Each line in a psurf file
contains information about nodes, lines, edges, faces, and color attributes. This
f'de should only be altered by changing the color attribute of a face. Typically, a
psurf file has its origins in vehicles created with the CDE CSCI, which is
described in detail by the document referenced in Section 2. I. Psurf files are used
by environment files.

.env This is an environment file. Each line in an environment file contains information

about an environment in Jack that the user has created, including position
information, how many figures are present, what colors belong to what attribute,
and what the figures are rooted to. This file may be altered to change colors,
positions, figures, etc. Environment files are created when the user wants to save

an environment. Environment files are used by animation files and by reach
demonstrations.

.jcl This is an animation file. Each line in an animation file is a command to Jack,
which Jack executes. This file may be altered to reorder, add or delete commands
to Jack. Animation files are created by the user to provide a means of moving the
figures in an environment, and the commands may be created either while still in
Jack, by using a text editor, or by using the animation generator.

Further information about how psurf, environment and jcl files work can be found in the Jack
User's Manual.

4.2.2 Psurf Files

The following files in the/usr/local/upenn/demo directory are psurf files:

ah64.pss This psurf file was downloaded from the Apache model in the CDE system, and
contains the full cockpit plus the Apache canopy. It was originally intended for
use with the occlusion and reach analysis demos, but it was discovered that the
seat wasn't quite positioned properly, neccessitating revisions on the CDE cockpit.
This version of the Apache cockpit was retained for use by the animation demo,
and is referenced by the files view.env, sites.env, scene.env, ah64.env,
95pilot.env.

cockpit.pss This psurf file is a modified version of the ah64 psurf. The canopy has been
eliminated to save time and neaten up the screen, the seat has been moved forward
slightly, rudder pedals have been added, and more detail has been added to the
radio panel for the reaches. This version of the Apache cockpit is used in the reach
demo, and is referenced by the files radiosolid.env, radiosites.env, and
cockpit.env.

A3I Phase III Jack CSCI Page D-7

Jack has certain limitations with psurf files. For instance, the Apache cockpits that we axe
currently using are based on the 3 dimensional models created with the CDE system.
Unfortunately, attempts to create a 3 dimensional cockpit instrument panel were unsuccessful. The
canopy by nature is a three dimensional object, but the instrument panel has so many knobs,
switches, and so much detail, that the Jack system simply cannot handle all the information.
Instead, we have a flat 2 dimensional cockpit panel, with the instruments indicated by rectangles or
squares, some of which are colored. Particular panels, such as the radio panel, can be selected for
slightly more information, and the outlines of the knobs and selection switches can also be added
for the price of speed and loading time. It is advisable to decide which section of the panel to focus
on, and make that section of the panel more detailed, leaving the rest of the panel less detailed.

4.2.3 Environment Files

The following files in the/usr/local/upenn/demo directory are environment files:

95pilot.env This environment file has the 95th percentile male mannequin sitting in the full
canopy cockpit with full color. This particular environment was used for
colorization trials, and to see how far over the cockpit panel the pilot's head is at
95th percentile. This particular environment file is accessed by demo.jcl.

ah64.env This environment file has the 50th percentile male mannequin sitting in the color
cockpit with detailed radio panel. This particular environment isn't accessed by
anything at all.

radiosites.env This environment file has the 50th percentile mannequin sitting in the color cockpit
with detailed radio panel, with sites defined around the radio panel and on the
control surfaces of the collective and cyclic. Primarily used in the reach demo, this
particular environment file isn't accessed by anything at all.

radiosolid.env This environment file has the 50th percentile mannequin sitting in the color cockpit
with detailed radio panel, radio and control sites defined, and with two lights
illuminating the cockpit and the mannequin. For all intents and purposes, this file is
identical to radiosites.env, except it allows us to painlessly shade the environment
without having to creat and position lights beforehand. This particular environment
file isn't accessed by anything at all.

scene.env This environment file has the 50th percentile female mannequin leaning against the
full canopy cockpit, checking out the interior. Originally intended as a reference
point in space to be included in the occlusion-view demo, it created problems with
the view from eyepoint and was left out for this phase. Instead, it served to prove a
point that Jack can be used for any environment, including maintenance, and
spawned an offshoot called outside.env that is typically brought up, shaded, and
left on the console as a pretty picture. This particular environment file isn't
accessed by anything at all.

outside.env This environment file has the 50th percentile female mannequin leaning against the
full canopy cockpit, with a Xth percentile female approaching from the other side of
the aircraft's nose. Based on the scene.env file, the additional figure was added
during a demo to display how easy the mannequins are to manipulate, and how
quickly an environment can be created. Both this file, and scene.env, have a major
fault in that they have a shading problem that solidifies a cockpit window where it's

A3I Phase III Jack CSCI Page D-8

not supposed to be shaded. This particular environment file isn't accessed by
anything at all.

sites.env This environment file has the 95th percentile male mannequin seated in the full
canopy cockpit, with sites set on the radio panel, various places about the
instrument panel, and on the control surfaces. Originally the test of the reach
facilities, it has been supersceded by radiosolid.env. This file is not accessed by
anything at all.

view.env This environment file has the 95th percentile male mannequin seated in the full
canopy cockpit, with two cameras. One camera is the default camera, the one
looked through when the environment is first brought up. The other camera is
attached to the mannequin's left eye, allowing us to see what the mannequin would
see when we attach to that camera and execute some movements. This file is
primarily used by the view demo, and is accessed by view.jcl.

For information on how jcl and environment files access other files, please refer to the Jack User's
Manual.

The "radiosites.env" and "radiosolid.env" files can be difficult to demonstrate reaches with, as the
sites on the radio panel, cyclic and collective can be difficult to find. By going to the options
menu, then the display menu, and selecting to turn segment sites on, all the sites that are defined
on a figure can be displayed. To turn them back off, select the turn segment sites off from the
display menu. Care must be taken when selecting a site to reach for, in particular, do NOT simply
click once in the vicinity of where to reach to. If the wrong site is chosen accidentally, that is will
be the site used. Instead, hold the mouse button down when clicking and carefully read the
information presented in the blue message window. If the site is not the desired one the site can be
changed by clicking once on another button on the mouse while still holding down the original
button.

The file "scene.env" is not being accessed by any animation files at the moment because the
animation files are having difficulty running from the correct viewpoint when the "scene.env" file
is used instead of the "view.env" file.

The file "outside.env" is used primarily as an endpiece display for the 4D. Due to the problems
with the shading, it is not yet possible to display it shaded, but it still looks good even in wireframe
mode.

4.2.4 Animation Files

The following files in the/usr/local/upenn/demo directory are animation files;

demo.jcl This animation file runs as follows: the camera is looking towards the cockpit and
mannequin while the mannequin moves its head to the fight, to the left, back to
center, looks down at the panel, looks to the left side of panel, looks to the fight
side of panel, looks back to the middle of the panel, then looks up, looks down,
looks up, looks down, looks to the left of the panel, and moves its left arm to touch
the panel a few times.

view.jcl This animation file runs exactly the same way demo.jcl runs, except that the
view.env file has attached the camera to the mannequin's eyes. Thus, view.jcl

A3I Phase III Jack CSCI Page D-9

allows us to 'be' the mannequin and see what it sees, while demo.jcl allows us to
watch the same movements from an exterior viewpoint.

For more information on how jcl files access other files, please refer to the Jack User's Manual.

The most basic commands in the animation files are movements of the mannequin's limbs. For
more information on how to generate commands that the animation files will accept, refer to section
6.5 of this document. As bugs in the Jack program are fixed, the cockpit itself will be able to
move with the pilot attached to the cockpit seat. In short, after some small problems with the
animation system are fixed, full animation facilities will be available for producing complete
animation sequences.

Currently all the animation scripts run in wireframe mode, as the facilites for running animation do
not yet allow the animation to run in shaded mode.

5.0 NOTES

5.1 Limitations

Jack is sorely limited by the graphics and calculation power of the machine it runs on. Even
though the CDE is capable of producing a three dimensional cockpit on the 4D, Jack spends far
more than an acceptable period of time trying to load psurf files that contain substantial quantifies
of three dimensional information. For example, the CDE has several modes of display,.ranging
from simple squares delineating instruments to detail that includes the screws fastening instruments
to the panel. Even in the middle range of display detail Jack has difficulty creating the cockpit.
Instead, it is neccessary to pick a particular object or panel that needs to be three dimensional and
save it as a seperate file to include with the rest of the less detailed cockpit.

The A3I project is also hampered by delivery times of the Jack product. Delivery of the tape is
sometimes delayed, and additional problems neccesitating re-compilation of the code can cause
more time delay. The product itself, since it is still under development and enhancement, may be
missing features, may still have bugs, or may have had a component changed that will not allow
certain files to be run.

Additionally, there is a problem involving the lack of synchronization capabilities in Jack. While
running the Symbolics and Jack together, it is neccessary to synchronize the two. This
neccessitates the creation of some type of timing mechanism for Jack to be fully integrated with the
tick-based A3I simulation.

5.2 Future Directions

A3I PhaseIII Jack CSCI PageD-10

Future versions of Jack will be required to solve a variety of problems. Whether these problems
are solved by Upenn or by A3I staff is currently unknown. Regardless of who initiaties the
solutions, some features of Jack will be required in the near future:

* The ability to run animation in shaded mode. Currently animation only runs in
wireframe mode, making it difficult to determine information about instrument visibility when the
panel is viewed from the mannequin's eyepoint.

• The ability to communicate XYZ positions to the Symbolics or the Iris machines.
Some XYZ information is needed by other machines running in the A3I demo, making it
neccessary to create a means of determining XYZ positions of the mannequin or environment and
then be able to transmit this information to another machine.

• The ability to create a mannequin based on our own measurements of a human.
Currently all of Jack's mannequins are built on pre-determined data and reflect percentile norms of
a population. Should it become neccessary to focus on the measurements of a particular human, the
facilities to add and create this mannequin need to exist. This facility will also allow the project to
select a subject, enter data into Jack and run simulations, and then take the subject to the
environment and validate Jack's results.

• The ability to reflect force and accuracy in reach simulations. Once it has been
determined that a position is reachable from the pilot's position, it becomes neccessary to determine
whether force or accuracy is more important when reaching a site. A greater or lesser degree of
either may affect the outcome of the reach.

• The ability to detect immenent collisions and avoid them. When executing a reach,
Jack moves along a straight line regardless of whether that line collides with another object or not.
Some method must be developed to recognize objects in the reach path and detour around them
rather than move through them.

• The ability to synchronize Jack with other simulations on a tick-by-tick basis. In
order for the Symbolics to communicate with Jack in a timely manner, Jack and the Symbolics
must be synchronized in some manner so that neither one is running faster than the other.

Future updates of Jack will be obtained either by tape or from downloading the relevant files over
the Intemet. The downloading option is being experimented with on a trial basis to determine its
suitability for month-to-month updates.

6.0 USERS GUIDE

For a complete User's Guide to Jack, please refer to the Jack User's Guide referenced in section
2.1 of this document. Information on the foundations and framework of Jack can be found in the

Programming with Jack manual referenced in section 2.1. Instructions on running the A3I demo
files can be found in the JACK Demo Instructions and JACK Demo Speech, located in Appendixes
C and D of this document.

6.1 Compiling Jack

A3I Phase HI Jack CSCI Page D-1 1

Jack and its components have been written in C, and are therefore compiled using the Iris C
compiler. Each directory containing source code for Jack comes with its own Makefile.that
compiles that directory and executes other commands neccesary to build Jack. Jack has been
written for a variety of different generation Iris machines, and variables particular to the host
machine must be set before a compilation can be run. Appendix A gives an example of the
instruction sheet accompanying Jack 3.5, including instructions on setting these variables and how
to compile the system. See Appendix E for a detailed description of a compilation session with
Jack.

Jack has been organized by Upenn into a particular sequence of directories. The
"Programming with Jack" manual describes the various libraries, along with other information
such as macros, variables, arguments, etc. The directory structure of Jack on the A3I 4D machine
is displayed in Figure 2 as a directory breakdown. A more detailed listing of each subdirectory can
be found in Appendix A. This particular directory structure has been chosen by UPenn and has
been delivered in the manner displayed in Figure 2.

Level

4

5

6

I- indicates A31 modified files

Figure 2: Jack Directory Breakdown

A3I Phase HI Jack CSCI Page D-1 2

6.2 Porting Jack

It has been neccessary in the past to port Jack to another Iris for demo or test purposes. To do
this, the/usr/local/upenn directory must be copied to tape then reloaded onto the destination
machine, and recompiled.

A few things to consider:
• Who do the Jack files belong to?
• Where are all the files?

• What type of machine is the software to be ported to? Does Jack support it?

Ownership: On the A3I 4DGT, all the Jack files are owned by user 'upenn' and group 'upenn',
and the demo files are owned by user 'timelord' and group 'a3i_grph'. Since the 'timelord' and
'upenn' logins are not likely to exist on another machine, there are two options: 1) the sysadmin of
the destination machine can create a 'timelord' and 'upenn' login with the same user and group id
as 'timelord' and 'upenn' on the A3I machine (see below), or 2) the ownership of the files must be
changed to something more generic that will correspond to an already existing login on the
destination machine, such as 'guest'. This is best done before copying the files to tape.

guest:nu67SqhHx9/X6:998:998:Guest Account:/usr/people/guest:/bin/csh
timelord:mJFH1ObnUxYlg:24:30:G. Murdock Helms:/usr/people/u/timelord:/bin/csh
upenn:HI-IbXZveaq5D9w:50:50:UPenn Account:/usr/people/u/upenn:/bin/csh

Location: Figure 2 shows a detailed directory tree of where the Jack files reside. If
/usr/local/upenn is copied to tape, the tape contains all the files neccesary to run Jack.

Machine types: There are a variety of different operating system releases available for each Iris that
may involve changes in the way the windowing system works. Check the status of the destination
machine before attempting a port, and make sure the appropriate version of Jack is available for the
destination machine. The version of Jack currently running on the A3I 4D will work on a 4D, a
4D60Turbo, the 4DGT, and the 4DGTX. Jack does not need to be recompiled when porting from
the 4DGT to the 4DGTX.

See Appendix E for details on a sample port and compilation session from a 4D70T to a 4D70GT.

6.3 Modes of Operation

Jack has a variety of options that can be specified on the command line and will change the way
Jack interacts with the user. A list of these options can be found in the Jack User's Guide, Chapter
l, Section 1.4.5, page 12. The most frequently used option is the -1 option.

The -1 option, also known as 'network mode', causes Jack to look at a specific file for it's
commands rather than watching the keyboard and mouse. Jack's code has been modified slightly
so that if the -I option has been specified, a link with the Symbolics 3675 is initiated, and a
communications package on the Symbolics must be set up for the two machines to communicate.
Once the package has been set up properly, an environment can be read in and arranged to the
user's satisfaction.

A3I Phase III Jack CSCI Page D-1 3

After this environment is displayed, Jack can be told to read from the command (script) file
"symb.in" in the/usr/local/upenn/demo directory. Since the Symbolics is sending commands
across the network to this file on the 4D, the Iris will execute each of the commands the Symbolics
is sending it. If the link is being used to control environments involving reaches, it is neccessary
to predef'me the sites to reach to before attempting the link. The most efficient way to do this is to
create the environment with reach sites before initiating the link, and then loading that
environment. For examples of the types of commands passed from the Symbolics to the Iris

please refer to Section 6.5 of this document.

The only way to exit this mode is to kill the Jack program entirely, as Jack will not acknowledge
any keyboard or mouse-entered commands once it starts reading the command file.

A detailed description of the changes made to UPenn's code and how it works can be found in
Section 4.1 of the A3I Phase III Flight Dynamics / Guidance document listed in Section 2.

Jack currently does not have any special facilities to allow it to synchronize itself with events on the
Symbolics. Instead, when Jack is ready to accept input from the Symbolics, it sends an "okay"
message to the Symbolics, which issues a command to Jack and waits for Jack's next "okay"
message. Jack accepts the command, executes it, and sends an "okay" message back to the
Symbolics. There is a slight execution delay while Jack and the Symbolics send messages to each
other, but it is not significant enough to cause problems with the demo.

6.4 Updating Jack

There are two ways to update the Jack software: by tape, or across the net. In the past, tapes have
been mailed to us, which results in a week or more wait while the tape is made and shipped. A
faster method which works well in emergencies is to download the files using FTP between the
UPenn machine and the 4D.

The tape option, while simple, may take more time to arrive than is acceptable. Files may be
missing, and there is a question about how to determine which old files may be removed without
compromising the program.

The net option is immediately available, but is time consuming for the person transferring the files
down. Cary Phillips, our point of contact, may be reached at (215) 898 1976 for the machine
name, account name, and password needed to access and download the files.

Before beginning a download, the complete structure of the files on the UPenn machine must be
understood so files are not accidentally misplaced. This usually requires an hour or two of
looking around the UPenn machine while saving the session using the Unix "script" facility. Time
is also a consideration here...files transferred in the middle of a West Coast day may not reach their
destination intact, and it is best to wait until 9 or 10 pm PST before initiating a transfer session, as
traffic will be way down at that hour. A complete familiarization with the Unix FTP facility is
mandatory.

Most important to remember is that the machines should be fully backed up before the transfer,
preferably within the previous week, and the existing Jack program and files should be fully
backed up on tape before beginning the transfer. In case the update does not work, a copy of the
previous working version of Jack can be retrieved from the tape.

A3I Phase III Jack CSCI Page D-14

Any alterations to UPenn source code must be copied and kept in a safe place to be compared to the
new source code and to facilitate in updating the new code. This also includes new figure files,
psurf files, or other files added to any part of the UPenn directory structure that has not been
explicitly created by A3I. For example, the/usr/local/upenn/demo directory is an A3I directory,
and does not map onto any other UPenn directory. Thus, during an update, no files in the demo
directory will be affected or altered.

6.5 Creating Animation Scripts

In order to run either animation scripts, or to run Jack from the Symbolics, the instructions to Jack
must be in a format Jack will understand. Since the menus are not utilized while reading from
files, it becomes neccessary to turn Jack's menu commands into text commands that can be put into
a file. To do this, first decide what changes need to be made to the Jack environment. Next, go to
the Options menu and choose "start JCL file". Jack will ask for a file name. Jack will then convert
any of the subsequent menu commands to a textual format and save them in the file. The file will
be closed when Jack is exited, and the file may be examined to determine the text version of each
Jack command.

For those intending to work with the animation scripts at all, it is very important to learn how to
handle the JCL script facility, which is covered briefly in section 3.12 of the Jack User's Manual.
It is also helpful to understand how animation works. For each movement that a figure makes,
there are many small movements (or "frames") that are made to accomplish that goal. As an
example, the following sections describe how to move one of the pilots in the demo directory.

First, Jack needs a starting environment. Use the radiosites.env file, since it already exists. Once
that environment is read in and displayed on the console, decide what to move in that environment.
Since the pilot is what should be moving, the cockpit won't need to move. Now a decision must
be made as to what will move on the pilot. Let's say we want to move the pilot's right shoulder
so that his right hand will be sticking up in the air at roughly the same height as his shoulder.

First, take a look at the text in radiosites.env (Appendix B). We're looking for a figure, and we
know that it's a mannequin. "pbmale50.fig" is the only figure in the file, and thus must be the
pilot. By looking at the description of "pbmale50.fig", the figure's name is found to be "lee".
Now look down the list of lee's joints until reaching the one that says right_shoulder. This line
tells us what the displacement of lee's right shoulder is in X, Y and Z coordinates. It can be
difficult to tell which axis is the one to change, so at this point it is advisable to experiment with the
figure on the console. To adjust Ice's shoulder, go to the main menu, choose the move menu, and
select the adjust joint entry. Click left on lee's right shoulder, making sure to hold down the button
to confirm that you have lee's right shoulder. By clicking on any mouse button, a red wheel will
appear. Each mouse button corresponds to a different axis.

Depending on which axis has been chosen, the wheel will either be parallel to the horizon, or
perpendicular, with the fiat of the wheel running parallel to lee's chest, or perpendicular. To move
lee's arm to the front and up from his body choose the wheel that is perpendicular to lee's chest
and perpendicular to the horizon. By holding down the mouse button and moving the mouse, lee's
arm can be swung up and down. Observe the yellow text and note which of the parameters
changes as you move the mouse.

Since the rotating up and down of the right shoulder causes the numbers on the far right to change,
these are the coordinates that will be affected. Some consideration must be given at this point as to

.... A3I Phase III Jack CSCI Page D-1 5

how far the arm should move. Let's pick 42 degrees as an arbitrary number. Now, decide how
far to move the arm each "frame". Again, let's choose 5 as an arbitrary number, remembering that
if too large a number is chosen, the intermediate movements will be jerky, but if too small a
number is chosen, the intermediate movements will be smoother but will also take longer.

Now, go to the Options menu and start a jcl file called "testout". Then go to the Edit menu, choose
Adjust Joint and pick the fight shoulder. Move the fight shoulder a short ways, and then quit out
of Jack. Examining the file "testout.jcl" should reveal a line that appears similar to this:

adj ust_joint("lee.fight_shoulder",68.84deg,5.77deg,55.14deg);

The numbers in this example may not exactly match the numbers in your testout.jcl file. This is
because your mouse movements may have been smaller or greater than the one used for this
example.

Now start a different file. Using whichever UNIX text editor you're comfortable with, start a new
file called "movarm.jcl". This will be the file that contains all the information Jack needs to read in
an environment and perform animation. The first piece of information Jack needs to know is
which environment to perform its animation in. Add to this file the line:

read_environment("/usr/local/upenn/demo/radiosites.env");

This causes Jack to load the radiosites.env environment. Now Jack must be told to start a binfile
that will contain the 'compiled' version of the movements that it will be performing. Add the line:

init_binfile0;

This tells Jack to start a binfile to save all the movements in. The name of the file will be given to
Jack later. Now tell Jack what the first movement of the mannequin is. We already know the right
shoulder's starting position from the environment file. From watching how Jack's arm moved
earlier we know that the third parameter of the adjust_joint call is the parameter affected by moving
Jack's arm forward and up. The first movement should be 5 more degrees than the starting
position, so now add to the file the lines:

adjust__joint("lee.right shoulder",68.84deg,5.77deg,53.14deg);
add_frame to binfile0;

We tell Jack to add the frame to the bin file since we want that movement to constitute the next

frame of the animation. Continue adjust_joint and add_frame lines until the last adjust_joint
command has incremented lee's fight arm 42 degrees from it's starting position. After the
corresponding "add frame__to_binfile0;" command, add the line:

write_binfile("movarm.bin");

This tells Jack to write the movements in order to the file named "movarm.bin".

The completed, short animation sequence now lives in the file named "movarm.jcr'. To run the
animation in Jack, exit and start Jack again, locate the "read jcl file" in the Jack command menus
and type in "movarm.jcr' when Jack asks for the file to read. Jack will now read your animation
file, perform the movements, and save an image of each frame in the file "movarm.bin". Once
Jack has finished reading the animation file, exit Jack, start Jack up and execute the "load bin file"

A3I Phase III Jack CSCI Page D-1 6

command in the "playback" menu. By specifying the "movarm.bin" file, Jack will load the short
animation frames into Jack and wait for the "playback" command to be executed.

If Jack does not move quite right, edit the animation file and add or subtract moves, convert it to
bin format, and watch the animation run again. To produce a smooth, well-paced piece of
animation you will spend lots of time breaking movements down into very small increments and
continually re-running your animation script.

6.6 Generating Movements Automatically

Unfortunately, the chore of generating lots of lines of code to produce lots of little movements is
quite tiresome. In an effort to help generate animation scripts quickly and with less effort, a C
program called "Makescript.c" is currently being built to aid the scripting process. This program
accepts information about which mannequin joint is to be moved, how far it is to be moved and
which axis is will be moved along, and then produces a file that contains all the Jack instructions
ne.ccessar),, to produce that movement. In its current working state, the program only alters one
axis at a tame and will not accept multipe joints to move. The program is being enhanced,
debugged, and updated to handle movements along all three axes, as well as multiple joint
movements. The code for the current working version of the program can be found in Appendix F.

6.7 Downloading from CDE

Once a CDE environment has been loaded into the CDE, it can then be downloaded to Jack.
Simply start up CDE with the environment that will be downloaded to Jack. Then go to the
CDE menu and choose Data Format. A window will appear at the bottom that asks for one of
several types of file format. Select the Psurf format and click on OK. This window will go away
and another window will appear in the center of the screen that will ask for a scaling factor. A I
and a return should be typed in, unless the cockpit is to be scaled to a different size.

This window will be replaced by another window asking for a filename to be typed in. This is the
filename that the psurf information will be saved in. This window will go away and another will
appear in the upper left comer that has the legend "Select Bead Then Hit OK or Done" and three
buttons...OK, Done, and Undo. Now, to choose a section of the environment that you want to
save, simply click on that section so that a white line appears around the edge, then click on "OK".
Each section will be saved in the order it is selected. When all the sections have been selected,
clicking on "Done" will save all those sections in one psurf file.

The "Undo" button will erase the last input you clicked on. For more information on how to use
the CDE facilities and bringing up environments, please refer to the A3I Phase III CDE
Documentation listed in Section 2.1 of this manual.

6.8 Jack Installation Instructions

The following are instructions for installing Jack, and were included with the last Jack tape update.

Installing the Jack Software

When the software is extracted from the tape, it will create
directories called "gen", "4D", and "3000". The "gen" directory

A3I Phase III Jack CSCI Page D-1 7

contains the 'general' source code and data files for Jack and its
related programs. The "4D" directory contains files specific to the
IRIS 4D, and the "3000" directory contains files specific to the IRIS
3000. In particular, there are "bin" subdirectories in each of these
directories for executables for each of these machines. When you
unload the tape onto a specific machine, one of the directories (4D or
3000) will be useless, depending upon what type of machine you have
(or don't have). You should remove this directory to save space and
confusion.

Several shell variables must be set in order to run and maintain Jack.
The In-st is UPENN, which should be set to the "parent" directory
where the tape was installed, e.g. "/usr/upenn". The other important
variable is CPU, which should be either "4D" or "3000", depending upon
the machine type. These should be set in "/etc/cshrc".

When installing this code on an IRIS 4D, you will also need to ensure
that file $ {UPENN }/$ {CPU }/include/machine.h sets the proper
preprocessor control for your machine. This file should contain
exactly one of:

#define IRIS3000 1
or
#define IRIS4D60 1

or
#define IRIS4D70GT 1

If you axe compiling the code for an IRIS 4D60, be sure that the
proper symbol is defined!

After $UPENN and $CPU variables are set, "source" the
shell script "${UPENN}/gen/bin/upennenv.csh". This shell script sets
the following shell variables:

PATH
INCLUDEDIR
CFLAGS
BINDIR
LIBDIR
UPENNMAKERULES
QDRAWLm
PSURFLIB
PEALIB
IMAGELIB
HELPLIB

The PATH variable is set by "upennenv.csh" using the variables USRPATH
and SYSPATH, which are the user part and system part of the path,
respectively. These should also be set in "/etc/cshrc".

At Penn, our/etc/cshrc is as follows:

A3I Phase IIl Jack CSCI Page D-1 8

cut here

umask 022

stty erase "^H" kill "^U" intr "^C"
set term='iris-ansi"

setenv MAIL/usr/mail/$ {L(_NAME }

setenv TZ EST5EDT

switch (${LOGNAME})
case root:

setenv USRPATH .:/etc
setenv SYSPATH/usr/local/bin:/usr/bin:/bin:/usrPosd:/usrlsbin
setenv PATH $ {USRPATH }:$ {S YSPATH }
set prompt="#"
breaksw

default:
setenv USRPATH .:$HOME/bin
setenv SYSPATH/usr/local/bin:/usr/bin:/bin:/usr/bsd:/usr/sbin
setenv PATH $ {USRPATH }:$ {S YSPATH}
cat -s/etc/motd

endsw

if ("/bin/mail -e") then
echo "you have mail"

endif
breaksw

setenv UPENN/usr/upenn
setenv CPU 4I)

source $ {UPENN }/gen/bin/upennenv.csh

cut here

To recompile Jack and its supporting programs, just "make" the
directory "/usr/upenn/gen/src/". This will in turn make the various
libraries, putting them in "/usr/local/lib".

After you "make" the system, you may want to clean everything up by
reissuing the "make" command with the argument "clean":
% cd/usr/upenn/gen/src/
% make clean

This will remove the unnecessary ".o" files. Unless you plan on doing
programming using the Jack and Peabody libraries, you may also remove
the object libraries from "/usr/local/lib"

You will find that the directory/usr/upenn/gen/lib/images contains
some interesting images, but it also takes a lot of space. You may

A3I Phase HI Jack CSCI Page D-19

delete these if necessary.

Any questions or problems, call Cary Phillips, 1-215-898-1976

7.0 APPENDICES

A. Jack Directory Detailed Breakdown

/usr/local/upenn:
4D cshrc gen script.orig
README demo orig.reach symb.out
a.out extra ranlib test.c

typescript

Notes: This directory is the 'root' of Jack. All Jack files live under this directory.

/usr/local/upenn/4D:
bin include lib

Notes: This directory is the 'information' directory of Jack for the 4D, hence the name. Each of
the names under this directory is, itself, a seperate directory.

/usr/local/upenn/4D/bin:
jack-3.5-4D

Notes: The 'jack-3.5-4D' file is the executable binary version of Jack that is created from
compiling all the pieces of Jack.

/usr/local/upenrd4D/include:
machine.h

Notes: The 'machine.h' file is the information file that lets Jack know what type of machine its

dealing with.

/usr/local/upen n/4D/lib:
libalt.a libgio.a libjmenu.a libpsurf.a
libcar.a libjack.a libjtools.a librle.a
libcmd.a libjcmds.a libpea.a libvec.a

Notes: The files in this directory are created by compiling Jack, and are the archived library files
Jack references.

/usr/local/upenn/demo:
95pilot.env cockpit.pss symb.in
output.reach view.bin

radiosites.env

ah64.env figure.env radiosolid.env
ah64.pss reach4sites.jcl
cockpit.env male95 scene.env
mov.bin sites.env

Makescript.c
view.jcl

view2.jcl

Index demo.bin

demo.jcl view.env

A3I Phase III Jack CSCI Page D-2 0

Notes: The files under this directory have been created at NASA for the A3I Project and are
detailed in section 4.0 of this document.

/usr/local/upenn/gen:
bin include lib src

Notes: 'gen' is the directory that is at the top of all the C source code for Jack. Each file under
'gen' is a directory itself, and each directory contains different information.

/usr/local/upenn/gen/bin:
cptree init.sh- ranlib upennenv.csh-
cshrc lwpg subdir upennenv.sh
cshrc.usr nextdir tcd upennenv.sh~
gmake profile.csh treecd vtl00
init.sh profile.sh upennenv.csh vtl00.csh

vtl00~

Notes: Information that Jack needs for environment and other data is located in this directory.

/usr/Iocal/upenn/gen/include:
XtndRunsv.h grace.h
attribute.h jack.h
caricature.h jcmds.h
cmd.h

gio.h

make.h port.h vec.h
pl psurf.h
parsetab.h rle_getraw.h
jmenu.h peabody.h svfb.h
jtools.h polhemus.h svfb_global.h

Notes: This directory contains information Jack needs to compile the source code.

/usr/local/upenn/gen/lib:
peabody psurf

Notes: This section of the 'gen' directory contains information for the graphics sections of Jack.

/ u sr/loc al/u pen n/gen/l ib/pea body :
body.fig female99.fig
female01.fig male01.fig
female05.fig male05.fig
female25.fig male25.fig
female50.fig male50.fig
female75.fig pbfemale01.fig
female95.fig pbfemale05.fig

pbfemale25.fig
pbfemale50.fig pbmale50.fig
pbfemale75.fig pbmale75.fig
pbfemale95.fig pbmale95.fig
pbfemale99.fig pbmale99.fig

pbmale01.fig
pbmale05.fig

pbmale25.fig

Notes: This directory contains figure informatio for all the assorted genders and sizes of
mannequins.

/usr/local/upenn/gen/lib/psurf:
axis.pss cylinder.pss medcube.pss table.pss unluparm.pss
bar.pss floor.pss nasapanel.pss tv.pss unlupleg.pss
big.pss ground.pss plane.pss unbhead.pss unneck.pss
bigcube.pss light.pss poly.pss unctorso.pss unrclav.pss
camera.pss link.pss polybody.a unit.pss unrfoot.pss

A3I PhaseIII Jack CSCI PageD.21

ceiling.pss link0.pss puma.a
chair.pss linkl.pss pyramid.pss
chairl.pss link2.pss rectl.pss
chair2.pss link3.pss rect2.pss
cockpit.pss link4.pss skinny.a
cube.pss link5.pss sphere.pss
cyl.pss male50 stand.pss

unitpoly.pss unrhand.pss
unlclav.pss unrloarm.pss
unlfoot.pss unrloleg.pss
unlhand.pss unruparm.pss
unlloarm.pss unrupleg.pss

unlloleg.pss
unhorso.pss

Notes: This directory appears to be sample psurf f'des, test files, and information for Jack.

/u sr/local/upenn/gen/src:
lib src

Notes: Now we are getting to the serious source files. Each of these is a seperate directory.

/usr/local/upenn/gen/src/lib
alt caricature vec

Notes: Again, each of these is a subdirectory.

/usr/local/upenn/gen/src/lib/alt:
Makef'fle color.c io.c load.c

attribute.c foo light.c texture.c

Notes: This directory is mostly concerned with lighting sources.

/usr/local/upen n/gen/src/lib/caricature:
Makef'fle depthlist.c interface.c
antialias.c intensity.c lut.c

Notes: This directory has more lighting sources.

/usr/local/upenn/gen/src/lib/vec:
Makef'de device.c intersect.c postscript.c tomatrix.c
chull.c event.c list.c pseud.c vector.c
color.c feedback.c matrix.c quaternion.c
debug.c findfile.c msg.c string.c

Notes: This directory has an assortment of files we have not yet connected to anything yet.

/u sr/local/upenn/gen:
bin include lib src

Notes: This directory contains more subdirectories.

/usr/local/upenn/gen/include:
XtndRunsv.h grace.h make.h port.h vec.h
attribute.h jack.h pl psurf.h
caricature.h jcmds.h parsetab.h rle_getraw.h
cmd.h jmenu.h peabody.h svfb.h
gio.h jtools.h polhemus.h svfb_global.h

A3I Phase HI Jack CSCI Page D-2 2

Notes: This directory contains information for many of the lack commands.

/usr/local/upenn/gen/src
lib src

Notes: This directory contains more subdirectories.

/usr/local/upenn/gen/src/lib
alt caricature vec

Notes: More subdirectories.

/usr/local/upenn/gen/src/src
jack lib

Notes: And MORE subdirectories...

/usr/local/upenn/gergsrc/src/jack
Makefile a.out
Makefile.orig main.c menu.c

main.orig

Notes: This directory contains what appears to be the main program and executables for Jack.

/usr/local/upen n/gen/src/src/lib
Makef'fle cmd gio jmenu psurf
alt errs jack jtools rle
caricature files jcmds peabody vec

Notes: Each of these are subdirectories with sources for their namesakes.

/usr/local/upen n/gen/src/src/lib/alt
Makef'de color.c io.c
attribute.c foo light.c

load.c
texture.c

Notes: More sources for lighting.

]usr/l°cal/upenn/'gen/src" /src/lib/caricature
Makef'de mtenslty.c rnknode.c render.c
antialias.c interface.c mkpoint.c scan.c
depthlist.c lut.c mkpoly.c
geom.c mkedge.c print.c update.c

Notes: More sources for lighting.

/u sr/local/upenn/gen/src/src/li b/cmd
Makef'fle device.c helpfile msg.c
cmd.c help.c menu.c msg.old

shade.c

screenmsg.c

Notes: We're not sure what's in here.

A3I Phase III Jack CSCI Page D-2 3

/u sr/loc agupen n/gen/src/src/lib/.gio
Makef'de composlte.c glo.c image.c

Notes: We're not sure what's in here either.

/usr[local/upenn/gen/src/src/lib[jack
Makef'de draw.c look.c moveview.c

adjust.c error.c meter.c peawin.c
clip.c event.c meterwin.c pick.c
colormap.c genargs.c mouse.c picklist.c
describe.c grid.c move.c project.c
docmds.c highlight.c movefigure.c
dof.c init.c movenodes.c

domotion.c jcl.c movesite.c

trackwin.c
transform.c
view.c
window.c

quit.c
script.c
snap.c

Notes: Here are a lot of windowing sources and other assorted things.

/u sr/local/upenn/gen/src/src/lib/jcmds
Makeffle color.c interplay.c reach.c
Makefile.orig create.c jcl.c read.c
adjust.c delete.c light.c rename.c
atwibute.c display.c movefigure.c render.c
buffer.c force.c* moveitem.c

build.c help.c movesite.c reset.c
collide.c info.c postscript.c

shade.c

system.c
view.c

window.c
reroot.c

script.c

Notes: Here are a lot of sources for manipulating the mannequin.

/usr/local/upenn/gen/src/src/lib/jmenu
Makef'de color.c force.c
attribute.c create.c helpfile
parameter.c view.c
body.c deformation.c light.c
build.c display.c main.c
collision.c edit.c

object.c
options.c bkg.c

playback.c window.c
primitive.c write.c

move.c reach.c

shade.c

csg.c

Notes: Here are a lot of sources for assorted commands.

/u sr/local/upenn/ge n/src/src/lib/jtool s
Makefile buffer.c interplay.c postscript.c
attribute.c color.c light.c render.c

shade.c

Notes: More sources for shading and rendering.

/u sr/local/upenrdgen/src/src/lib/peabody
Makef'de find.c mreach.c parse.y remove.c
attribute.c interface.c name.c parseops.c traverse.c
collide.c keyword.c new.c print.c update.c
create.c lex.c op.c proplist.c verify.c
defs.h lex.1 parse.c reach.c write.c
expr.c metfic.c parse.h reachsite.c

write.c

info.c

A3I Phase III Jack CSCI Page D-2 4

Notes: Here are sources for a variety of commands, as well as other information.

/usr/local/upenn/genlsrclsrc/lib/psurf
Makef'lle decompose.c gen patch.c shade.c
bezier.c draw.c intersect.c print.c shadow.c
bin.c edge.c lex.1 reference.c spec.c
clippoly.c euler.c new.c render.c util.c
curve.c forward.c normal.c rp.y verify.c

Notes: Here axe more shading and drawing sources.

/usr/local/upenn/gen/src/src/lib/rle
Makef'fle dither.c rle_getrow.c rle_row_alc.c sv_putrow.c
Runsv.c rle_getcom.c rle_putcom.c scanargs.c svfb__global.e
buildmap.c rle_getraw.c rle_raw_alc.c sv_putraw.c

Notes: We've no idea what's in here.

/usr/local/upenn/gen/src/src/lib/vec
Makefile device.c intersect.c postscript.c tomatrix.c
chull.c event.c list.c pseud.c vector.c
color.c feedback.c matrix.c quaternion.c
debug.c findfile.c msg.c string.c

Notes: Here is a wide variety of assorted sources.

B. Sample Environment File: radiosites.env

attribute attribute5 {
rgb = (1.00,1.00,0.00);

}
attribute attribute6 {

rgb = (1.00,1.00,0.00);
}
attribute attribute7 {

rgb = (1.00,1.00,0.00);
}
attribute attribute8 {

rgb = (1.00,1.00,0.00);
}
attribute attribute9 {

rgb = (1.00,1.00,0.00);
}
attribute attfibutel0 {

rgb = (1.00,1.00,0.00);
}
attribute attributel 1 {

rgb = (1.00,1.00,0.00);

A3I Phase III Jack CSCI Page D-2 5

attribute attributel2 {
rgb = (1.00,1.00,0.00);

}
attribute attributel3 {

rgb = (1.00,1.00,0.00);
}
attribute attributel4 {

rgb = (1.00,1.00,0.00);
}
attribute attributel5 {

rgb = (1.00,1.00,0.00);
}
attribute attributel6 {

rgb = (1.00,1.00,0.00);
}
attribute attributel7 {

rgb = (1.00,1.00,0.00);
}
attribute attributel8 {

rgb -- (1.00,1.00,0.00);
}
attribute attributel9 {

rgb = (1.00,1.00,0.00);
}
attribute attribute20 {

rgb = (1.00,1.00,0.00);
}
attribute attribute21 {

rgb = (1.00,1.00,0.00);

attribute attribute22 {
rgb = (1.00,1.00,0.00);

}
attribute attribute23 {

rgb = (1.00,1.00,0.00);
}
attribute attribute24 {

rgb = (1.00,1.00,0.00);
}
attribute attribute25 {

rgb = (1.00,1.00,0.00);
}
attribute attribute26 {

rgb = (1.00,1.00,0.00);
}
attribute attribute27 {

rgb = (1.00,1.00,0.00);
}
attribute attribute28 {

rgb = (1.00,1.00,0.00);

A3I Phase III Jack CSCI Page D-2 6

}
attribute attribute29 {

rgb = (1.00,1.00,0.00);
}
attribute attlibute30 {

rgb = (1.00,1.00,0.00);
}
attribute attribute31 {

rgb = (1.00,1.00,0.00);
}
attribute attribute32 {

rgb = (1.00,1.00,0.00);
}
attribute attribute33 {

rgb = (1.00,1.00,0.00);
}
attribute attribute34 {

rgb = (1.00,1.00,0.00);
}
attribute attribute35 {

rgb = (1.00,1.00,0.00);
}
attribute attribute36 {

rgb = (1.00,1.00,0.00);

attribute attribute37 {
rgb = (1.00,1.00,0.00);

}
attribute attribute38 {

rgb -- (1.00,1.00,0.00);
}
attribute attribute39 {

rgb = (1.00,1.00,0.00);
}
attribute attribute40 {

rgb = (1.00,1.00,0.00);

attribute attribute41 {
rgb = (1.00,1.00,0.00);

}
attribute attribute42 {

rgb = (1.00,1.00,0.00);
}
attribute attribute43 {

rgb = (1.00,1.00,0.00);
}
attribute attribute44 {

rgb = (1.00,1.00,0.00);
}
attribute attribute45 {

rgb = (1.00,1.00,0.00);

A3I Phase III Jack CSCI Page D-2 7

}
attribute attribute46 {

rgb = (1.00,1.00,0.00);
}
attribute attribute47 {

rgb = (1.00,1.00,0.00);
}
attribute attribute48 {

rgb = (1.00,1.00,0.00);
}
attribute attribute49 {

rgb = (1.00,1.00,0.00);
}
figure camera {

attribute attribute2 {
rgb = (1.00,1.00,0.00);

}
segment camera {

psurf = "camera.pss";
attribute = attribute2;
site base->location = trans(O.OOcm,O.OOcm,O.OOcm);

}
}
figure usr_local_upenn_demo_cockpit {

attribute dkgray {
rgb = (0.42,0.43,0.42);

}
attribute red {

rgb = (1.00,0.01,0.00);
}
attribute white {

rgb = (1.00,1.00,1.00);
}
attribute green {

rgb = (0.00,1.00,0.00);
}
attribute blue {

rgb = (0.00,0.71,1.00);
}
attribute orange {

rgb = (1.00,0.58,0.00);
}
attribute bluegray {

rgb = (0.57,0.76,0.83);
}
segment usr local_upenn_demo_cockpit {

psurf = "/usr/Iocal/upenn/demo/cockpit.pss";
attribute = (dkgray,red,white,green,blue,orange,bluegray);
site base->location = trans(47.01 cm,30.16cm,-56.56cm);
site rvol->locafion = trans(67.85cm,5.30cm,-78.58cm);
site r l->location = trans(69.10cm,5.49cm,-73.81 cm);

A3I Phase III Jack CSCI Page D-2 8

site r2->location -- trans(69.48cm,3.64cm,-73.87cm);
site rtrans->location -- trans(68.70cm,-O.44cm,-78, lOcm);
site eye->location = trans(47.20cm, l.61cm,-65.35cm);
site clct->location = trans(29.39cm,39.94em,-84.72cm);

}
}
figure ["pbmale50.fig"] ("polybody.a") lee;
fi ;ure lee {

joint right_shoulder->displacement = (68.84deg,5.77deg,48.14deg);
joint right_elbow->displacement = (44.49deg);
joint right_wrist->displacement = (26. lOdeg,O.OOdeg,-6.46deg);
joint left_shoulder->displacement = (19.56deg,25.61deg,22.25deg);
joint left_elbow->displacement = (26.65deg);
joint left_wrist->displacement = (26.10deg,- 1.3 ldeg,- 1.59deg);
joint right_hip._joint->displacement = (O.OOdeg, 14.93deg,94.33deg);
joint right_knee->displacement = (31.60deg);
joint right_ankle->dispiacement = (O.OOdeg,O.OOdeg,-28.32deg);
joint left_hip..,joint->displacement = (O.OOdeg,8.19deg,90.85deg);
joint left_knee->displacement = (26.55deg);
joint left_ankle->displacement = (O.OOdeg,O.OOdeg,-26.85deg);
joint right_clavicle ,joint->displacemem = (O.OOdeg,O.OOdeg);
joint left_clavicle_joint->displacement = (O.OOdeg,O.OOdeg);
joint waist->displacement = (O.OOdeg,O.OOdeg,O.OOdeg);
joint atlanto oecipital->displaeement = (O.OOdeg,O.OOdeg,O.OOdeg);
joint solar_plexus->displacement = trans(O.OOcm,O.OOcm, O.OOcm);
joint
joint
joint
joint
joint
joint
joint
joint
joint
jomt
joint
joint
segment
segment
segment
segment
segment
segment
segment
segment
segment
segment
segment
segment
segment
segment

right_knuckles->displacement = (62.44deg);
left_knuckles->displacement = (90.OOdeg);
right_ball of foot->displacement = (O.OOdeg);
left_ball_of_foot->displacement = (O.OOdeg);
base of neck->displacement = trans(O.OOcm,O.OOcm,O.OOcm);
right_stemoclavicular->displacement = trans(O.OOcm,O.OOcm,O.OOcm);
left_sternoclavicular->displacement = trans(O.OOcm,O.OOcm,O.OOcm);
right_eye->displacement = trans(O.OOcm,O.OOcm,O.OOcm);
left_eye->displacement = trans(O.OOcm,O.OOcm,O.OOcm);
root_ltorso->displacement = trans(O.OOcm,O.OOcm,O.OOcm);
root_rhip->displacement = trans(O.OOcm,O.OOem,O.OOcm);
root_lhip->displacement = trans(O.OOcm,O.OOcm,O.OOcm);

left._toes->attribute = (attribute5,attribute6,attribute7);
right_toes->attribute = (attribute5,attribute8,attribute9);
right_fingers->attribute = (attribute5,attribute lO,attribute 11);
left_fingers->attribute = (attribute5,attribute 12,attribute 13);
left foot->attribute = (attribute5,attribute 14,attribute 15);
right_foot->attribute = (attribute5,attribute 16,attribute 17);
right_lower_leg->attribute = (attribute5,attribute 18,attribute 19);
left lower_leg->attribute = (attribute5,attribute20,attribute21);
right_upper_leg->attribute = (attribute5,attribute22,attribute23);
left_upper_leg->attribute = (attribute5,attribute24,attribute25);
lower_torso->attribute = (attributeS,attribute26,attribute27);
center_torso->attribute = (attribute5,attribute28,attribute29);
bottom_head->attribute = (attribute5,attribute30,attribute31);
neck->attribute = (attributeS,attribute32);

A3I Phase III Jack CSCI Page D-2 9

segment right_clavicle->attribute = (attribute5,attribute33,attribute34);
segment lefLclavicle->attribute -- (attribute5,attribute35,attribute36);
segment right_upper_ama->attribute -- (attribute5,attribute37,attribute38);
segment left_upper_arm->attribute = (attribute5,attribute39,attribute40);
segment right_lower__arm->attribute = (attribute5,attribute41,attribute42);
segment left_lower__arm->attribute = (attribute5,attribute43,attribute44);
segment fight_hand->attribute -- (attribute5,attribute45,attribute46);
segment left_hand->attribute = (attribute5,attribute47,attribute48);
segment right_eyeball->attribute -- (attribute5,attribute49);
segment left._eyeball->attribute = (attribute5,attribute49);

}
constraint camera_root {

connect world.base to camera.camera.base;
displacement = xyz(- 160.18deg,-71.09deg,- 161.17deg) * trans(- 177.49cm,87.41 cm,-

64.85cm);
]
constraint usr__local_upenn_demo_cockpit_root {

connect world.base to usr_local_upenn_demo_cockpit.usr__Iocal_upenn_demo_cockpit.base;
displacement = xyz(-89.91deg,0.00deg,0.00deg) * trans(41.76cm,75.78cm,-20.20cm);

}
constraint lee_base {

connect world.base to lee.body_root.floor,
displacement = xyz(-180.00deg,84.20deg,-180.00deg) * trans(-12.59cm,-54.90cm,14.94cm);

C. Jack Demo Instructions

Brief Overview:

First Demo:

• login
• start Jack

• create mannequins and demonstrate joint limitations
• exit Jack

Second Demo:
• start Jack

• bring up reach demo and store it
Occlusion:

• start Jack

• bring up animation demo
• demonstrate animation while attached to mannequin's eye
• point out occlusion of master arming switch by glare shield
• exit Jack

Reach Analysis:
• bring up stored reach demo
• demonstrate reach from shoulder (strapped to seat)
• replace mannequin's hand on collective
• demonstrate reach from waist (not strapped to seat)
• solidify environment

A3I Phase III Jack CSCI Page D-3 0

• leave solid environment onscreen for duration of demo

F_.ir.m.Rema

1. Login on the 4D and run the correct .cshrc file.
I will set up an account for you on Coral that will contain the file 'jackshelr. After logging

in, you must execute the command 'source jackshelr. There axe paths and environment definitions
that Jack needs that are set in the jackshell file, so don't forget to source it. If your prompt changes
to 'tmI@CORAL>', you're on your way.

2. Change directory to/usr/local/upenn/demo.
This directory contains all the files you will need to run the demo. Specifically, the files

you want are 'radiosites.env' and 'view.bin'. To get to this directory easily, simply type in
'demo'.

3. Start up the Jack program.
Type in "jack" to start Jack.

4. Load the Mannequins.
(this is the first section in the demo. I have doubts whether it will remain, but rll put it in

anyways.)
a. when the blue window at the bottom says, "Press mouse button for main menu", move

the mouse over the "Create Menu" selection until it turns black, move it to the fight until the
"Create Menu" appears. Now choose the "Bodies" selection, and move right until you get a list of
bodies. Run the the mouse button down and release on the "95th percentile polybody male".

b. Jack will want you to name the male. His default name is "Fred", so you can just hit
return.

c. When the figure comes up, you need to move him over to make room for the female.
Click right on "Edit Menu", move the mouse to get the "Move Menu" from the Edit Menu, and
release the mouse button on "Move Figure".

d. Choose the figure to move by clicking on some portion of it.
e. Move the figure by clicking on the left mouse button and shifting the mouse left until the

male is sufficiently off to one side that the female can be loaded.
f. Hit escape to exit the "move figure" mode.
g. Load the female figure by following step one, only this time stop and release on "95th

percentile polybody female".

h. You will need to change the name this time. The "delete" key serves as a backspace
key, so erase "Fred" with the delete key and type something else in, then hit return.

i. To demonstrate joint limitations, go to "Edit Menu", "Move Menu", and release on
"Adjust Joint". Choose any joint on either figure...the elbow joint works well, though it only has
one direction to move, and the shoulder joint shows all three degrees of freedom.

j. Once you've chosen the joint you want, press a button on the mouse. If a red wheel
appears, move the mouse and watch the limb. It will not move past a pre-set point that defines the
limit of human movement.

k. To exit the "adjust joint" mode (You can only adjust *one* joint at a time!), press
escape.

1. To adjust another joint, follow step i, and pick another joint to play with.

5. Exit Jack

A3I Phase III Jack CSCI Page D-3 1

To exit the program, which you need to do to clear the screen, click on "Quit", and again
on "Quit".

S.e,.c,an. LP..eanm

1. Loading the Reach Demo:
a. when the blue window at the bottom says, "Press mouse button for main menu", press

the right mouse button and hold it down. When the menu appears, slide the arrow over the
'options menu' selection so that it turns black, and then slide the mouse to the right so the options
menu will appear. Now slide the mouse down to the 'background menu' option, and slide it right
again so the background menu will appear. Now slide the mouse down so that 'bkg off' turns
black, and release the mouse button. The background grid should now dissappear.

b. Click fight again for the main menu, slide to 'create menu' and then slide right to select
'read environment'. Release the button. The window at the bottom will now ask you for a file.

Type in 'radiosolid.env'. Should you make a mistake, the 'delete' key will back up and erase.
Press return to start loading the file. It will take several minutes to load this file, so you want to
start loading as soon as you can.

c. Store this window. To store this demo, click left in the close box of first the jack
window and then blue message window. They will sleep peacefully until you bring it back again.

2. Loading the Animation Demo:
a. Move the arrow back over your original login window. Change directory to 'male95'

(type in 'cd male95'). Please note that you MUST be in the 'male95' directory for the animation
demo to load correctly. Once you are in the 'male95' directory, start up Jack again by typing in
'jack'.

b. Shut off the grid by selecting 'options', 'background', and
releasing on 'background off'.

c. Now load the animation demo by selecting 'utilities', 'playback', and 'load bin file'.
The blue window will now ask for a file. Type in '../view.bin'. This demo will also take several
minutes to load.

Occlusion:

1. Running the Animation Demo"
a. Recite speech about attaching view to mannequin's eyepoint.
b. Click right and select "utilities", "playback" and "playback with view". Jack will now

execute animation with the viewpoint attached to Jack's eyes.
c. Point out tailwheel lock and main armament switch are obscured by glare shield and are

commonly mistaken for each other.
d. You are done with the animation. Click right, and select "quit", then choose "Yes, quit"

to exit Jack.

Reach Analysis:

1. Running the Reach Demo
a. click left in the middle of the small box that the blue window made when you closed it.
b. click left in the middle of the small box that the main Jack window made when you

closed it.
c. The cockpit will come up with all the colors skewed, so you first need to reset the

colors. Select "edit", "attributes" and "change color", and click on any line of the cockpit or the
mannequin.

A3I Phase III Jack CSCI Page D-3 2

d. A small red box will appear. Jack wants you to create a new window for the color
meters. Click right, drag the mouse to make a box, and click right again. The window will
materialize, and Jack will *automatically* reset all the colors for you.

c. Make sure the arrow is inside the new color window, and press the escape key. The
background of the color window should now turn black.

f. Move the arrow up to the gray bar that says "color meters". It should turn into a circle.
Click right, and relcase on "Push".

g. Now move the arrow up to the gray bar that says "Jack window". It again should turn
into a circle. Click right, and release on "Pop".

h. Now you're ready to try a reach. First, select "edit" from the main window, then
"reach menu", then "interactive reach".

i. Jack wants you to pick a point to touch. You want to find the site on the radio
tmnsmitter....roughly the center of the transmitter button. If you don't find it at first, keep trying.

j. Once you've found the site, it will display red XYZ lines. Now Jack wants you to type
in a value, so simply hit return to use the default.

k. The next step is to select Jack's left fingers, which can be tricky. Try to press and hold
on the junction of all the lines at thc tip of Jack's fingers. Don't let go of the button until you're
sure you clicked on the right place. You will see red XYZ lines, and yellow lines describing what
you've clicked on. If the lines say "lee.left_fingers" near the end, you can let go of the button. If
they say something else Cclct" may appear...thafs the collective), click another button to select the
next closest site. 1. Now Jack wants the last joint allowed to move during the reach demo.
You want to select his left shoulder in the same manner you selected Jack's hand, by holding the
button to make sure you have the right site. Once you've selected his left shoulder, Jack will
execute the reach, lack will also tell you how far away you are.

m. Now, put Jack's hand back on the collective. The collective site can be tricky to
find...you need to practice finding it. It's about 1/3 of the way up on the slotted handgrip of the
collective, on the outside (far left). Hit return to enter the default value, and then click on Jack's
left hand, then on his shoulder, to make him reach for the collective again.

n. Now....make Jack reach for the radio transmitter again, only moving from the waist!
Follow steps i through 1, making sure to choose Jack's waist instead of his shoulder this time.

o. Solidify Jack. Click on "Utilities Menu" in the main menu, slide right to "Shade
Menu", then release on "Shade", and Jack will become solid.

D. "Makescript.c", Movement Generating Program

Introduction

The original concept for Makescript stemmed from the enormous quantities of time it took to
produce a working animation file that had any sense of smoothness to it. Animation files in Jack
consist entirely of Jack commands in text format that are read into the program and then executed.
After the sequence of commands is executed, they are saved to a 'bin' file that can be read in and
executed much faster than the execution that happens during the reading of the file.

The primary problem with writing these files is that a simple movement of the mannequin, such as
raising and then lowering an arm, can not be specified in such a way that only requires the user to
state the start position and the end position of the arm. Instead, the movements had to broken
down into a smaller sequence of movements that would appear smooth when played back. No
facilities were available in Jack to input the joint, the start position and the stop position, and which

A3I Phase III Jack CSCI Page D-3 3

axis would be affected. Instead, Jack users were left with the option of editing hundreds of lines
of code themselves to produce small increments of motion.

From the sheer amount of time spent in editors creating movements Makescript was born as a
utility for Jack users. The program is extremely simplistic, clumsily coded, and somewhat
redundant in the current version. Future versions of Makescript will be more compact,

understandable and elegant.

Sections

Makescript has three basic sections which are also its three functions: Getlnput, Calculate, and
WriteFile.

Functions and Arguments

Getlnput

GetInput is the first function. It takes five arguments from the user and passes them on to other
function(s) which it calls later.

The fit-st argument 'joint', which is a character string, is the name of the joint to be moved. The
user does not specify the mannequin's name, as the program assumes it is the mannequin named
'lee' and automatically inserts that name into the resulting animation script. The p_gram does not
spellcheck the input to make sure the joint exists. There is checking done to deterrmne whether the
user's joint has one degree of freedom, three degrees of freedom, or if the joint is base_of_neck
which needs transformation information. Depending on what type of joint has been input,
Getlnput will ask for different information from the user.

The second argument 'temp', which is also a character string, is which axis the movement will take
place on. This input is then checked to make sure the user has entered X, Y or Z rather than a non-
existant axis that will cause the animation to fall. If the user has entered an incorrect axis, the

program will not go further until X, Y or Z is entered.

The third argument, 'first', is an integer and contains the starting position of the joint.

The fourth argument, 'last', is an integer and contains the ending position of the joint.

The fifth argument, 'amount', is an integer and contains the value by which the arm should move
each frame.

Also included are integer variables that contain values for non-changing axes ("axisl" and "axis2";
values for transformations that do not change ("transl", "trans2", "trans3"); and a flag to determine
when correct axes are input ("test"); and two character strings, one of which reads in the X,Y or Z
input for checking before transferring it to coord ("temp"); the other string is set to the axis that
movement is performed around("calcaxis").

Getlnput asks for joint, axis, start, end and amount information, then calls Calculate and passes
along the values of calcaxis, axisl, axis2, bodypart, first, last, amount, transl, trans2 and trans3.

Calculate

A3I Phase III Jack CSCI Page D-3 4

Calculate accepts ten values from Getlnput, uses them to determine if movement is positive or
negative around the axis, then begins calculating joint increments and calls WriteFile after each
calculation to store the information.

The first argument, 'rotate', contains the axis that movement will occur around.

The second argument, 'nomovel', contains the integer value of a nonmoving axis.

The third argument, 'nomove2', contains the integer value of the other nonmoving axis.

The fourth argument, 'part', contains the name of the mannequin's joint that will be moved.

The fifth argument, 'start', contains the integer value of the beginning postition of the joint.

The sixth argument, 'stop', contains the integer value of the finishing position of the joint.

The seventh argument, 'degree', contains the integer value that determines how much the
movement will be incremented each time.

The eigth argument, 'tx', contains the integer value of the unmoving X transformation.

The ninth argument, 'ty', contains the integer value of the unmoving Y transformation.

The tenth argument, 'tz', contains the integer value of the unmoving Z transformation.

In addition, Calculate has two integer variables, one of which serves as an alterable counter for the

calculate loops ("counter"); the other records counter's value each time through the loop ("temp").

Calculate checks whether the increment is positive or negative, then enters a loop so that the first
value is the value the user has entered, the next value is that start value incremented by the amount
the user wanted, and so on until the last calculation is that of the end position. For each time
through the loop, as each increment is calculated, Calculate calls WriteFile to store these numbers
and passes to it rotate, nomovel, nomove2, part, counter, tx, ty and tz.

WriteFile

WriteFile takes eight arguments that are passed to it by Calculate and uses them to correctly format
each command line and prints that line out to a default file.

The f'u-st argument, 'move', is a character designating which axis movement will take place
around.

The second argument, 'norot 1', is the value of the first of the two non-rotating axis.

The third argument, 'norot2', is the value of the second non-rotating axis.

The fourth argument, 'piece', is the joint of the mannequin that will be moved.

The fifth argument, 'alter', is the altered value of the movement.

The sixth argument, 'xtrans', is the unmoving X transformation.

A3I Phase III Jack CSCI Page D-3 5

The seventh argument, 'ytrans', is the unmoving Y transformation.

The eigth argument, 'ztrans', is the umoving Z transformation.

WriteFile also has special pointers to allow it to open a file and write movement information to it.

WriteFile first opens the default output file "jack.comm" to write information to. Then it checks to
see what type of joint is being moved. If the joint is base_of_neck, it requires extra transformation
information. For each type of joint, the axis being moved is checked so that the changing value is
placed in the correct spot each time. Each time WriteFile is finished executing, it closes the input
file.

Problems

Makescript does not support multiple axis movements. Nor does it provide for the complete
creation of a new script, and is designed instead to build segments of animation code that must be
added to an already existing file by hand. Once a joint's movements have been computed and
written, Makescript quits and does not allow for the input of another joint. The program will not
take more than one joint at a time to move.

Code

#include <stdio.h>
/* GM Helms, Oct. 12, 1988

Makescript.c -> a program to produce JACK jcl files
given joint information and increment information.

Variables:
axis

joint
alpha
omega
increment

which X, Y or Z axis to change
which joint to alter
starting position angle of joint
ending position angle of joint
how far to increment each movement

*/

Functions:

GetInput
Calculate
WriteFile

takes initial setup values
calculates each change in joint angle
writes each change to an output file

/* Getlnput --> test is a flag for the x,X,y,Y,z,Z testing loop. If
test is 0, one of the correct axis were entered. If
test is 1, the entry was not an axis and needs to be
entered again.

*/
Getlnput(coord, bodypart, first, last, amount)
char coord;
char bodypart[50];
int first, last, amount;

A3I Phase III Jack CSCI Page D-3 6

{
int test, axisl, axis2, transl, trans2, trans3;
char temp[2]; /*patch for reading/n in buffer if not xy or z first time */
char calcaxis;/* patch to let print routine know where moving axis is */

test=l;
printfC JACK Script Generating ProgramM");
printf('NnWhich joint on the mannequin will be moved? ");
scanf("%s", bodypart);
if (bodypart[5]!='k' && bodypart[6]!='k' && (bodypart[5][='e' && bodypart[6]!='r)

&& (bodypart[6]!='e' && bodypart[7]!=T))
{

printf('NnWhich axis, (x, y, or z) do the changes take place on? ");
while (test != 0)
{
scanfC%s", temp);
switch(tempi0])

{
case 'x':

case 'X':
test--0;
calcaxis--'x';
break;

case 'y':
case 'Y':
test=0;
calcaxis='y';
break;

case 'z':
case 'Z':
test=0;
calcaxis='z';
break;

default:

printf("_Entry must be x, y or z axis. Please re-enter.");
test= 1;
break;
}

} /* end while loop */
} /* end of if not a single-joint bodypart*/

else
calcaxis='x';

coord=temp[0];
printf('NnWhat is the start coordinate? ");
scanfC%d", &first);
printf('MWhat is the end coordinate? ");
scanfC%d", &last);

A3I Phase IIl Jack CSCI Page D-3 7

printf('_By what amount should the coordinates change per move? ");
scanfC%d", &amount);
if ((bodypart[5]!='e' && bodypart[6]!=T) && (bodypart[6]!='e' && bodypart[7][='l')

&& bodypart[5]!='k' && bodypart[6]!='k')
{

switch(temp[0])
{

case 'X':

case 'X':

printf('"_Enter unchanging Y coordinates: ");
scanfC%d", &axisl);
printf('_LEnter unchanging Z coordinates: ");
scanff"%d", &axis2);
break;
case 'y':
case 'Y':
printf('_aEnter unchanging X coordinates: ");
scanfC%d", &axisl);
printf('%'aEnter unchanging Z coordinates: ");
scanf("%d", &axis2);
break;
case 'z':
case 'Z':
printf('_Enter unchanging X coordinates: ");
scanfC%d", &axisl);
printf('_Enter unchanging Y coordinates: ");
scanf("%d", &axis2);
break;

} /* end of case */
} /*end of if */
else

{
axisl=0;
axis2=0;
}

if (bodypart[0]=='b')
I
printf('MEnter unchanging X transformation: ");
scanf("%d", &transl);
printf('_Enter unchanging Y transformation: ");
scanfC%d", &trans2);
printf('NnEnter unchanging Z transformation: ");
scanfC%d", &trans3);

}
else

{
trans 1---0;
trans2=0;
trans3=0;
I

A3I Phase IIl Jack CSCI Page D-3 8

Calculate(calcaxis, axisl, axis2, bodypart, first, last, amount, transl, trans2, trans3);

/* Calculate

,/

takes axis variable and figures each increment, then calls
WriteFile and passes all the info and the incremented moves
to be printed out.

Calculate(rotate, nomove 1, nomove2, part, start, stop, degree, tx, ty, tz)
char rotate;

int nomovel, nomove2, start, stop, degree, tx, ty, tz;
char part[50];
{

hat counter,temp;
counter=0;

if (degree>0)
for (counter=start, temp=counter-degree; counter<=stop; counter=temp+degree)

{
temp=counter;
WriteFile(rotate, nomovel, nomove2, part, counter, tx, ty, tz);

}

if (degree<0)

for (counter=start, temp=counter-degree; counter>=stop; counter=temp+degree)
I
temp=counter;
WriteFile(rotate, nomovel, nomove2, part, counter, tx, ty, tz);

l

/* WriteFile
,/

prints information out to a file in acceptable Jack format

WriteFile(move, norotl, norot2, piece, alter, xtrans, ytrans, ztrans)
char move;

int norotl, norot2, alter, xtrans, ytrans, ztrans;
char piece[50];
{

FILE *input_file, *fopen 0;

input_file = fopen ("jack.comm"_ "a");
if (input_file _ NULL)

printf ('"_n--> jack.comm could not be opened.<--_");
if (piece[0]=='b')
{

if (move=='x')
!

fprintf(input_file, '_aadjust_joint(V'lee.%s\",xyz(%ddeg,%ddeg,%ddeg) *
trans(%dcm,%dcm,%dcm));", piece, alter, norot 1, norot2, xtrans, ytrans, ztrans);

A3I Phase III Jack CSCI Page D-3 9

fprintf(input_file, '_add_frame_to_.binfile0;M");
}
if (move-='y')
{

fprinff(inpuLfile, '_aadjust_joint(V'lee.%sV',xyz(%ddeg,%ddeg,%ddeg) *
trans(%dcm,%dcm,%dcm));", piece, norotl, alter, norot2, xtrans, ytrans, ztrans);

fprintf(input_file, '_add_frame__to_binfile0;M");
}
if (move=='z')
{
fprinff(inpuLfile, 'Nnadjust_joint(V'lee.%sV',xyz(%ddeg,%ddeg,%ddeg) *

trans(%dcm,%dcm,%dcm));", piece, norotl, norot2, alter, xtrans, ytrans, ztrans);
fprintf(input_file, 'knadd_frame_to_binfile0;M");

}
}

else if ((piece[5]=='e' && piece[6]!='y') II (piece[6]=='e' && piece[7]l='y') IIpiece[5]=='k' II
piece[6]=='k')

{
fprintf(inpuLfile, '_tadjust_joint(V'lee.%sV',%ddeg);", piece, alter);
fprintf(input_file, "Xnadd_frame_to_binfile0;M");

}
else
{

if (move=='x')
{
fprintf(input_file, "_nadjust_joint(V'lee.%sV',%ddeg,%ddeg,%ddeg);", piece, alter,

norotl, norot2);
fprintf(input_file, 'Nnadd_frame_to binfile0;_n");

}
if (move=='y')
{

fprintf(input_file, 'Naadjust_joint(V'lee.%sV',%ddeg,%ddeg,%ddeg);", piece, norotl,
alter, norot2);

fprintf(input_file, 'Nnadd_frame_to_binfile0;_");
}
if (move=='z')
{
fprintf(input_file, "Xnadjust_jointfx"lee.%sV',%ddeg,%ddeg,%ddeg);", piece, norotl,

norot2, alter);
fprintf(input_file, "_nadd_frame_to_binfile0;_n");

I
}

fclose (input_file);

mainO
{
char axis;
char joint[50];
int alpha, omega, increment;

A3I Phase IIl Jack CSCI Page D-4 0

Getlnput(axis, joint, alpha, omega, increment);

Annex E

Army-NASA Aircrew/Aircraft Integration Program

A3I

Software Detailed Design Document:
Training Assessment

prepared by

Carolyn Banda

December 1988

Table of Contents

1.0 INTRODUCTION ... E-1
1.1 Identification .. E-1
1.2 Scope ... E-1
1.3 Purpose .. E-1

2.0 RELATED DOCUMENTATION .. E-2
2.1 Applicable Documents .. E-2
2.2 Information Documents .. E-2

3.0 REQUIREMENTS AND DESIGN APPROACH ... E-3
3.1 Requirements, Methods, and Rationale .. E-3
3.2 Hardware Environment .. E-4
3.3 Software Environment ... E-4

4.0 DETAILED DESIGN DESCRIPTION .. E-6

4.1 Organization ... E-6
4.2 Unit Detailed Design .. E-8

4.2.1 Task Data Collection Program (TDCP) E-8
4.2.1.1 TAS-input function .. E-9
4.2.1.2 Get-obj function .. E-9
4.2.1.3 Get-obj-characteristics function E-9
4.2.1.4 Attribute value input functions and menus E-9

4.2.2 Training Assessment Module (TAM) .. E-10
4.2.2.1 TAM Control Rules .. E-11

4.2.2.2 Input Functions ... E-12
4.2.2.3 Learning Experience Rules .. E-12
4.2.2.4 Media Rules ... E-13

4.2.2.5 Training Time Rules ... E-13
4.2.2.6 Output Rules ... E-14
4.2.2.7 Output Functions ... E-15

5.0 NOTES .. E-15
5.1 Miscellaneous .. E-15
5.2 Limitations and Future Directions ... E-15

6.0 USERS GUIDE .. E-17
6.1 Overview ... E-17

6.2 How to run the Task Data Collection Program (TDCP) E-17
6.2.1 Loading TDCP ... E-17
6.2.2 Running TDCP .. E-18

6.3 How to run the Training Assessment Module (TAM) E-18
6.3.1 Booting the ART world ... E-18
6.3.2 Getting around in ART .. E-19
6.3.3 Loading TAM .. E-19
6.3.4 Running TAM ... E-19
6.3.5 Justification with ART .. E-20

7.0 APPENDICES ... EA-1

A. Glossary of Terms, Acronyms, or Abbreviations .. EA-1
B. Module Hierarchy Charts ... EB-1

B.1 Task Data Collection Program (TDCP) ... EB-2
B.2 Training Assessment Module (TAM) ... EB-3

C. Sample Task Data File ... EC-1
D. Sample Displays .. ED-1

Table of Contents

D.1 Task Attribute Input Displays from TDCP ED-1
D.2 Sample task object with characteristics .. ED-4
D.3 Sample rules .. ED-5
D.4 Sample agenda ... ED-7
D.5 Output screen .. ED-8
D.6 Justification networks .. ED-9

A3I Phase III Training Assessment CSCI Page E-I

1.0 INTRODUCTION

1.1 Identification

This document establishes the requirements and detailed design of the Training Assessment
Computer Software Configuration Item (CSCI), which forms a part of the A3I Computer Program
System. Descriptions of the detailed processing requirements, structure, I/O, and control are
provided for each lower level Computer Software Component (CSC), unit, or function contained
within the CSCI.

1.2 Scope

The material in this document is directed toward three categories of readers: 1) those who wish to
learn what Training Assessment in A3I does, 2) those who wish to use the Training Assessment
software to predict training requirements for a set of tasks, and 3) those who might want to modify
and update the Training Assessment software. Familiarity with ART (Automated Reasoning Tool
by Inference Corp.), Common Lisp (especially object-oriented programming), and the Symbolics
environment is assumed.

1.3 Purpose

The purposes of the Training Assessment software are twofold: 1) to give the equipment designer
early feedback about the training consequences of his/her design and mission and 2) to provide
assistance to the training designer by aiding the development of a quasi-POI (Program Of
Instruction). To do this, the Training Assessment software predicts training requirements for a set
of mission tasks in the form of learning experiences, media, and training times necessary to train an
incoming student with a specified experience/training level to successfully perform each task. At
this point, we simply assume "successful" performance; we do not predict different training
requirements for varying levels of performance. The standard of performance is assumed to be
embedded within the task/objective (terms we use synonymously) and particularly within the task
characterization data. Training cost is not yet computed but could be easily added if cost per hour
were known for the various training media.

The training requirements assigned are sensitive both to incoming student training level, which is
expressed as degree of familiarity with the tasks and their associated equipment, and to budget
level, which can be set to low, medium, or high. Training times are adjusted based on the media
selected, so that, for example, a complex task can be trained more quickly with a dedicated part task
trainer than with a less costly, but less appropriate alternative training medium.

A comparative analysis can be done by examining the training requirements for two or more sets of
equipment designs and mission tasks.

An explanation facility is available through ARTs justification capability to show diagrammatically
how the resulting "quasi-POI" was derived. For any selected fact, the justification network, which
is a directed graph, shows all the rules which fired to assert this fact and all the facts which caused
these rules to fire.

A3I PhaseIII Training AssessmentCSCI PageE-2

2.0 RELATED DOCUMENTATION

2.1 Applicable Documents

Air ForceRegulation50-8,TrainingPolicy and Guidance for ISD, 1983. (Media descriptions)

ART Programming Tutorials, Volume 1: Elementary ART Programming and Volume 3: Advanced
Topics in ART, ART Version 3.0, Inference Corp., Los Angeles, California, 1987.

ART Reference Manual, ART Version 3.0, Inference Corp., Los Angeles, California, 1987.

Flight Trainin_ Guide for AH-64 Aviator Oualification Course, United States Army Aviation
Center, Fort Rucker, Alabama, February 1988.

Smith, Barry and Banda, Carolyn, "Use of Knowledge-Based System to Assess Aircrew Training
Requirements as Part of Conceptual Design", paper in progress, 1989.

Training Analysis Suoport Computer System (TASC$) User's Guide, prepared by Logicon, Inc.,
San Diego, CA for Air Force Systems Command, ASD/YWB, Wright Patterson AFB, Ohio,
August 1987.

2.2 Information Documents

Branson, Robert K., Rayner, G.T., Cox, LL., Furman, J.P., King, F.J., and Hannum, W.H.,
Inters¢rvice Procedures fgr Instmcri0nal SystCm_ D_v¢iopmen_ (6 vols.) (TRADOC Pam 350-30
and NAVEDTRA 106A). Ft. Monroe, VA: U.S. Army Training and Doctrine Command, August
1975.

Ellis, John A. and Wulfeck II, Wallace H., Handbook for Testing in Navy Schools, Navy
Personnel Research and Development Center, San Diego, California, October 1982. (An
explanation of IQI (Instructional Quality Inventory) is given in Chapter 2: Classification of
objectives and implications for testing.)

Symbolics Manual 7A; Pro_m_mming the User Interface - Concepts, Cambridge, Mass., 1988.

A3I Phase III Training Assessment CSCI Page E-3

3.0 REQUIREMENTS AND DESIGN APPROACH

3.1 Requirements, Methods, and Rationale

As we stated in Sec. 1.3, the primary goal of the Training Assessment software is to provide both
equipment designers and training designers early feedback as to the training implications and
requirements during the conceptual design stage so that design decisions and/or mission features
which have a negative impact on training requirements can be examined and modified in software
rather than in hardware. The impact of planned student changes can be examined as well. To
achieve this goal, it was decided to partially automate the process of using task analysis and ISD
(Instructional Systems Development) methods to predict training requirements.

First, we describe historical background for the training assessment area. The Phase III training
assessment software represents a refinement of the Phase II work done in this area. The approach
of developing a quasi-POI (Program Of Instruction) was felt to provide the best way of defining
and measuring training requirements for a set of tasks to be trained. This approach was first
suggested by Dr. Charles Jorgensen during Phase II planning. ISD was chosen because 1) it is in
current use by the military to assess training needs, and 2) it is well documented and provides a
step-by-step method for developing a POI from job requirements. The Phase II effort, which was
our first attempt to apply ISD, followed the approach outlined in the ISD manuals by Robert
Branson et al. Each task, or learning objective, was placed in a learning category, of which there
are twelve. Four learning categories are primarily psychomotor in nature, seven are primarily
cognitive, and one is attitudinal. We did not use the attitudinal category in Phase II. With each
learning category is associated a two-dimensional table with task characteristics and training
considerations on one axis and training systems on the other. Based on each task's characteristics
(including cueing, feedback, and response requirements), a table match was done to find any and all
of the training systems which could be used to train the task. A general budget level was indicated
for each training system so that the user could select the less costly training system if more than one
was applicable.

For Phase III the progression was made from a table-based method to a rule-based approach for
determining training requirements. The Phase III Training Assessment Module (TAM) capitalizes
on work done by Logicon in developing a database-oriented program called TASCS (Training
Analysis Support Computer System). TASCS uses ISD methods to perform task analysis and
assign training requirements based on task characteristics and some training design expertise which
is encoded in the program in the form of IF...THEN rules. A good deal of TASCS's training
assessment must be done manually by the user. In order to automate this process for A3rs MIDAS
(Man-machine Interface Design/Analysis System) workstation, we decided to make certain
simplifying assumptions. We assume tasks are equivalent to learning objectives, at least for the set
of tasks we are analyzing. Currently with TAM, there is no inherent organization in the task set;
future plans call for organizing the task structure into a hierarchical tree of learning objectives. In
addition, TAM constructs a partial Program Of Instruction (POI) instead of the more complete POI
provided by TASCS. TASCS builds lesson elements in the form of sets of learning experiences,
media, and time to train for specified learning objectives, then carries the training design process to
the point of grouping these lesson elements into lessons and organizing lessons into modules.
Considerable user intervention is required for this process. TAM, however, stops at the point of
assigning lesson elements to each learning objective. These lesson elements form the beginning of

A3I Phase III Training Assessment CSCI Page E-4

a quasi-POI; the word "quasi" is used because TAM's output does not presently form a complete
POI composed of sequenced lesson modules.

TAM's set of rules represents an expanded capability in other respects, however, in that TAM takes
into account student background and training budget level in its analysis. Rules to assign learning
experiences were taken from TASCS, with minor modification; part task learning experience
assignment depends on student experience with the equipment. Media rules were obtained from
Barry Smith, who has expertise in the area of training design. The media rules incorporate the
following philosophy for making media assignment sensitive to budget level:

1) The lowest fidelity media are assigned, regardless of budget, which satisfy all particular
cueing requirements and characteristics for a given task,

2) Even if the budget doesn't permit it, high fidelity (and costly) media are assigned for certain
highly difficult, safety or mission critical tasks, and

3) if the budget doesn't permit the appropriate media assignment for required cueing or other
characteristics, and the task does not fall into one of the highly critical areas referenced in 2),
the actual weapon system is assigned as the training media.

The basic time-to-wain formulas were taken from TASCS with some minor modification; these
formulas use various task attributes, such as difficulty level, time to perform, safety criticality
level, mission criticality level and, in the case of cognitive part task training, a multiplication factor
based on the demands imposed by the task's learning subcategories and reasons for difficulty. An
"ideal" time to train is computed using these formulas, one for each applicable learning experience
type; included in this computation is a multiplication factor which takes into account the student's
degree of familiarity with the task and equipment. Next, an "actual" training time is computed by
adjusting "ideal" time based on the media assigned.

Ten varied aircrew tasks from the actual AH-64 training program were used as test cases to validate
TAM's output. These tasks ranged from purely flying oriented tasks to aircraft system emergency
procedures. Over the 10 tasks, 28 of the 29 learning experiences predicted by TAM for the tasks
examined are present in the current AH-64 training program. Media predictions matched those
currently in use for 23 of the 29 learning experiences. The exceptions were all in the academic
portion of each task. The training time predictions were more difficult to validate, in part because
the AH-64 training program did not list separate times for the individual tasks, but rather gave all
the tasks trained during each training day. Comparing times for tasks trained on day number 9 and
day number 32 of the Apache program showed TAM's results to be 50% less and 10% less than
actual training time, respectively. However, the Apache data most likely includes a certain amount
of overhead. For more details on the validation runs, please see "Use of a Knowledge-Based
System to Assess Aircrew Training Requirements as Part of Conceptual Design" by Barry Smith
and Carolyn Banda.

3.2 Hardware Environment

The Training Assessment software runs on the Symbolics 3600 series under Genera 7.2. To run
ART, a minimum of 8 megabytes of memory is recommended.

3.3 Software Environment

A3I PhaseIII Training AssessmentCSCI Page E.5

There are two separate training assessment programs for Phase 111-- the Task Data Collection
Program (TDCP) and the Training Assessment Module (TAM), which are described in detail
below. These two programs currently run in a stand-alone mode; the user first collects task data
offline with the TDCP, then runs TAM to predict training requirements for selected tasks.

The task data collection program is written in Symbolics Common Lisp (Genera 7.2); TAM is
written in ART (Automated Reasoning Tool) and Symbolics Common Lisp. ART is a rule-based
expert system building tool written by Inference Corp.

TAM can be run in interpreted form (slow to load; rule text available for browsing) or in compiled
form (fast to load; rule text not available for browsing).

ART provides capability to explain results and conclusions through its justification facility.

A3I PhaseIII Training AssessmentCSCI PageE-6

4.0 DETAILED DESIGN DESCRIPTION

4.1 Organization

Thefollowingdiagram(Fig.1)showsdataandcontrolflow for thetwotrainingassessment
programs:(1) task data collection program and (2) TAM (Training Assessment Module).

ask data _,) v[

ser inputs: "

student level
budget level

task selections

Data)

Program I

f
Task Data Collection . _ 1"ask data file
Program - TDCP _i(ART-readable

(L is p) Ik,objects & facts)

Training Assessment
Module - TAM
(ART & Lisp)

Quasi-POl:

learning experiences
media
training times 1

,L
i ,us,,,,cat,oo1network (opt.)

Fig. 1 TRAINING ASSESSMENT: CON TROLAND DATAFLOW

The following brief explanation of how to operate the training assessment software describes the
two programs (task data collection program and TAM) and how they relate to each other.

To obtain training requirements for a set of tasks, the user runs the menu-oriented task data
collection program to enter a set of mission tasks and their associated characteristics, such as cues,
systems used, reasons for difficulty, a subjective difficulty rating, mission and safety criticality
ratings, frequency of task performance, and learning subcategories as well as degree of familiarity
with the tasks and equipment for students from a variety of backgrounds. The task data collection
program writes this information to a file, organizing the tasks (or rather learning objectives) into a
set of ART objects and facts in a format readable by TAM. Next the user runs TAM from the ART

A3I Phase III Training Assessment CSCI Page E-7

environment to predict training requirements for a set of tasks, a specified student training level, and
a selected budget level. Various rules in TAM are activated according to task characteristics to
determine for each learning objective, in succession, a set of required learning experiences, media,
and training times. Total training time for each task is computed, as well.

Module hierarchy charts showing functional organization within each program appear in Appendix
B; these diagrams show function calling sequences and, in case of TAM, rule progressions. The
file location of each function appears below its name in parentheses.

A description of the location of the source code files for the two programs follows; note that both
programs are loaded via main load files.

1) Task data collection program files are in directory b:>carolyn>tas>ui. Relevant fries are:

TDCP-loadfile.lisp
input-defs.lisp
input-driver.lisp

- load file for task data collection program
- menu definitions for user interface
- control functions

The following files contain menu definitions and functions to query the user for specified task
characteristics.

types.lisp

systems.lisp

cues.lisp
rfd.lisp
scrit.lisp

merit.lisp
frequency-time.lisp
lscs.lisp

newness.lisp

- inactive; reserved for future use. This attribute could be used
to categorize tasks along some dimension, such as learning
objectives vs enabling objectives.

- the aircraft systems which are involved in performance of this
task

- detailed selection of cues required in task performance
- reasons for difficulty
- reasons for safety criticality; safety criticality level is

automatically assigned based on these reasons
- mission criticality rating
- frequency of task performance and time to perform
- learning subcategories for this task; includes cognitive,

psychomotor, and misc. categories.
- degree of familiarity with this task and its equipment for the

set of students defined in the variable *student-list* in the file
input-driver.lisp.

TAM-task-set.art This file is constructed by the task data collection program
and contains task data in the form of ART-readable objects
and facts.

For a description of current values which these task attributes can assume, please see Appendix D,
which shows sample screens from the Task Data Collection Program.

2)
ale:

TAM (Training Assessment Module) files are in directory: b:>carolyn>TAM; relevant files

tam-loadfile.lisp
setup-fns.lisp

load file for TAM; this is loaded from the ART environment.
supporting Lisp functions to obtain from user input
parameters for TAM

A3I Phase III Training Assessment CSCI Page E-8

output-fns.lisp

TAM.art
le-rules.art
media-rules.art
time.art

output-with-ART.art
TAM-task-set.art

supporting Lisp functions to assist print TAM results to
screen
definitions for relations, schemata, facts, and driver rules
rules to assign learning experiences
rules to assign media
rules to compute ideal training times; also rules to adjust ideal
times to actual training times
rules to print results to screen
input file of data objects; written by the task data collection
program.

4.2 Unit Detailed Design

4.2.1 Task Data Collection Program (TDCP)

The TDCP is a stand-alone, menu-oriented program written in Symbolics Common Lisp to take
advantage of predefined menu types which provide extensive menu capability. Basic menu types
include pop-up menus, multiple choice menus, and choose variable values facilities; these menu
types are combined through flavor combination to produce more complex menus. Available menu
types are explained in Symbolics Manual 7A: Programming the User Interface - Concepts.

The TDCP allows the user to enter and characterize a series of tasks by selecting all applicable
values for a set of attributes for each task. TDCP employs a "mixed initiative" style; it is up to the
user to ensure that appropriate values for all attributes are entered for each task. It should be noted
that the Task Data Collection Program was developed for internal use only. It is functionally
complete; however, its user interface is not totally polished and also is not totally "user robust"
although a careful user should have no trouble using it.

The TDCP was designed to minimize user entry error by having the user select displayed values
for the task attributes rather than type them in; the only "typing" required is entry of the task name.
In addition to task attribute values, the user is asked to indicate for each task its degree of
familiarity for each student in the planned student set. The possibilities are: familiar with both the
task and equipment, with the task only, or with neither. A list of planned student types resides in
the top level file (input-driver.lisp) in the variable *student-list* and in the variable *student-item-
list* in the TAM file setup-fns.lisp. The current student set contains UHT graduates and Apache
.pilots; this can be modified by changing *student-list* in input-driver.lisp and *student-item-list*
m the TAM file setup-fns.lisp.

The TDCP is designed in a modular way to allow the user to add new attributes or attribute values
in the future. To add a new attribute, one would create a new file and construct a menu to display
its possible values; one would also modify existing rules in TAM which reference the new attribute
and its values. Knowledge of Lisp and Zmacs would be required; however, templates exist for a
variety of menu capabilities in the current set of TDCP files.

Function calling sequences, which are also indicated in the module hierarchy chart in Appendix B,
are as follows:

TAS-input
get-obj

A3I Phase III Training Assessment CSCI Page E-9

get-obj-characteristics
get-cues
get-types
get-systems
get-rfd
get-difficulty-rating
get-rfsc
get-mission-crit-rating
get-frequency
get-time-to-do

convert-to-minutes

get-lscs
get-safety-crit-rating

get-newness-values
reformat-newness-list-entry

Descriptions follow for the main functions of the TDCP; the remaining functions, most of which
obtain values for a task attribute, have straightforward logic. Screens showing menu displays
produced by these functions appear in Appendix D. For more information on these functions, the
reader is referred to the code listings in Appendix E.

4.2.1.1 TAS-input function

The TAS-input function is the main driver function for the TDCP; it contains a loop to obtain for
each task desired, the task name, its attribute values, and its degree of familiarity for the planned
set of students. To terminate the task entry process, the user enters "nil" in response to the query
for task name. After all tasks and values have been entered, TAS-input reformats the data into
ART-readable object and fact definitions and writes these definitions to a task data file.

4.2.1.2 Get-obj function

This function is very simple; it uses the system function tv:choose-variable-values to ask the user
to enter the task name, which it returns to its caller, TAS-input.

4.2.1.3 Get-obj-characteristics function

Get-obj-characteristics, called by TAS-input, is responsible for obtaining from the user a set of
values for each task attribute for a given task. To do this, it has a case statement which allows the
user to enter task attribute values in any order. When the user has entered all applicable values for
all attributes for the current task, he or she clicks on "DONE" to proceed to the next task.

4.2.1.4 Attribute value input functions and menus

This set of functions uses menus to query the user for task attribute values. Current attributes
include: types (not used), systems, cues, reasons for difficulty (rfd) and difficulty rating, safety
criticality (scri0, mission criticality (mcrit), frequency, time to perform, and learning subcategories
(lscs).

A3I Phase III Training Assessment CSCI Page E- lo

These functions and menus will be described as a class since they use the same basic methods with
minor variations. Variable and function names axe in italics. Menu types used by TDCP functions
include:

pop-up-multiple used when multiple values are allowed and expected, specifically
in gathering values for the attributes types (not in current use),
systems, cues, reasons for difficulty, reasons for safety criticality,
mission criticality rating, and learning subcategories.

pop-up used when only one value is allowed, in obtaining a value for
frequency and "newness" (degree of familiarity for a given
student).

tv:choose-variable-values - actually a function, but it creates a menu for selecting one value
from a set; default value is in boldface. Used to obtain a value for
difficulty rating and time-to-do.

The following description applies to pop-up-multiple menus and associated functions; however,
use of pop-up menus are very similar. The designator <attribute> means attribute name, for
example, cues, systems, etc. First *<attribute>-menu* is defined as well as *<attribute>-list*,
which contains a list of possible attribute values. A variable called *<attribute>-choices* is defined
to designate options after all applicable attribute values have been selected and to name the
functions which will be called when the user clicks on the various options. Typically the options
are "Do it", meaning "use the selected values", or "None", indicating no values are selected. The
corresponding functions are <attribute>-do-it, which sets the variable *selected-<attribute>* to a
list containg all values highlighted by user, and <attribute>-none, which sets *selected-
<attribute>* to nil. The menu itself, called *<attribute>-menu*, constructed using a "setq" to
define menu characteristics such as menu type, default character style, label, border width, etc.

The function which drives the whole process is called get-<attribute>; it sets up the label to contain
current task name, displays the menu, deactivates it, and returns values chosen by the user in the
variable *selected-< attribute > *.

4.2.2 Training Assessment Module (TAM)

Most of TAM is written in ART, with Symbolics Common Lisp used for its menu capabilities to
allow the user to select student background, budget level, and tasks for the current run. Several
Lisp functions also assist with formatting the output.

TAM's knowledge about instructional design is embedded in its rules for assigning learning
experiences, media, and training times. In addition, program control is accomplished through a set
of "driver" rules and output control is performed through a set of output rules, which collect results
and print them in order according to learning experience. Currently TAM contains about 100 rules,
of which 77 are concerned with instructional design and the rest with control, input, and output.
The breakdown within TAM is: 21 rules to assign learning experiences, 31 to assign media, and
25 to compute training time (8 for ideal training time and 17 for actual training time).

A3I Phase Ill Training Assessment CSCI Page E-11

TAM's module hierarchy chart appears in Appendix B. TAM's rules are grouped according to
function and TAM's Lisp functions appear in calling sequence. Again, file locations for functions
and rules appear below their names in parentheses.

Training assessment for a given task is a sequential process. First, a set of learning experiences
(or instructional strategies) is assigned based on task characteristics. The possible learning
experiences are: three types of explanation (textual, graphic, and dynamic), demonstration, three
types of part-task training (cognitive, psychomotor, and affective), and full task training. At a
minimum, one type of explanation (and only one) is assigned, as is full task training. Optionally,
based on task characteristics and student background, any or all of the remaining learning
experiences may be assigned. Learning experience assignments are based on task characteristics
and student background. Media assignments are based on task characteristics, learning experience
category, and budget level. Training times are based on task characteristics, learning experience
category, training medium, and student background.

After a task has its set of learning experiences, a training medium is chosen for each learning
experience. Available training media include: textbook/workbook, lecture, videotape, videodisc-
CBT (Computer Based Training), cockpit familiarization trainer, cockpit procedures trainer,
operational flight trainer, part-task trainer, weapon system trainers with and without motion
platforms, as well as actual system. These media types span the major classes of training devices
presently in use.

Finally, a training time is computed for each lesson element in a two step process. First, an "ideal"
training time is computed, with student background taken into account; this "ideal" time is then
adjusted to an "actual" time, based on medium used.

Salience values for certain rules are used during inferencing when it is important to control the
order of f'tring. For example, this is done in the assignment of media within the various categories
of learning experiences where a "default" method of reasoning was necessary to emulate the
domain expert's line of reasoning. For example, in the case of demonstration and full task training
learning experiences, salience values allow TAM to assign media with successive levels of fidelity,
starting at the low end (cockpit familiarization trainer) and finally assigning the actual system as a
default if no other medium could be assigned.

4.2.2.1 TAM Control Rules

Several rules, which reside in the file TAM.art, handle the startup and control of TAM.
COLLECT-TASKS gathers all tasks which were read in when the task data file was loaded and
places them in a list (?*entire-task-list*). START-UP is activated when the user enters "(TA)" to
start the training assessment process; START-UP calls functions to obtain input information
required by TAM--namely, student background, budget level, and task set for which training
assessment is to be done. START-UP asserts the chosen task set as a list and causes INITIATE-
TRAINING-ASSESSMENT to activate. INITIATE-TRAINING-ASSESSMENT forms the main

control loop over the task list by asserting the "find-training" relation for each task in the list, one at
a time.

The rule CASE1-OLD-TASK-OLD-EQUIPMENT retracts "find-training" for any task if the
student is familiar with both that task and its equipment.

A3I Phase III Training Assessment CSCI Page E-12

4.2.2.2 Input Functions

Several functions, which reside in the TAM file setup-fns.lisp, display menus to obtain from the
user input parameters required by TAM: get-student-background, get-budget-level, and select-
tasks. These functions display selection menus so the user need not type in values by hand; this
reduces chances for errors. The list of selected tasks returned from the menu in select-tasks
requires further manipulation to reduce it to a simple list of tasks; this is done by the function
reduce-user-select-list.

4.2.2.3 Learning Experience Rules

The rules to assign learning experiences were taken directly from TASCS; additionally, however,
TAM takes into account student familiarity with task and equipment by assigning part task training
only if both task and equipment are new to the student.

As for programming considerations, saliences are used with explanation rules to assign
explanations in order with dynamic explanation first, graphic second, and textual last. This is done
because dynamic subsumes the other two, graphic subsumes textual, and textual is assigned if the
other two do not apply. There is also a tradeoff between training assessment runtime vs.
explainability of results. In a number of learning experience cases, most notably demonstrations,
there are multiple rules for assigning the learning experience. During training assessment, all
applicable rules are placed on the agenda. In the case of the demonstration learning experience, for
example, 5 or 6 rules might apply. These rules could check to see if demonstration has already
been assigned and remove themselves from the agenda in that case, but the information that they
also were activated would be lost. It was decided to let them go ahead and f'ire (even though they
won't assign demonstration again if it already has been assigned) so that they will appear in the
justification network. The fact that multiple rules were activated could lend strength to the
conclusion that a demonstration was needed.

A3I Phase III Training Assessment CSCI Page E-13

4.2.2.4 Media Rules

The media rules, as mentioned before, were developed by Barry Smith; he also devised a media-
learning experience assignment matrix, which appears below in Figure 2. Learning experiences
are from TASCS and media types and their implied functionality are from AFR 50-11,
Management of Aircrew Training Devices.

VlEDIA

rextbook/Workbook

_nteractiveSlide/Tape

..ecture w/Visual Aids

v'ideo Tape

qideo Disc/CBT

2'FT

2PT

3FT

Dedicated PTT

¢¢ST w/o Motion

ArSTwith Motion

_,ctual System

F_xt Exl; Graph ExD

X X

X X

X X

X X

X X

LEARNING EXPERIENCES

Dyn Exp] Demo Cog PTI" Psy PTT _tt FIT FIT

X

X X

X

x X

X X X

X x

X X X

X X X

X X X

Figure 2

X

x

x

x

X

x

x

The rationale for each rule is given in a comment above the rule in the code listings in Appendix E.

4.2.2.5 Training Time Rules

A two-step process is used to compute training time. First, an ideal training time is computed
using formulas from TASCS with some adjustments. The original formulas follow; the TASCS
manual contains rationale for them. Note that all times are in minutes.

explanations:
demonstration:

cognitive ptt:
psychomotor ptt:
affective ptt:

difficulty * 60
difficulty * time-to-do * 1.5
difficulty * time-to-do * safety-criticality * Isc-factor * .2
difficulty * time-to-do * safety-criticality
safety-criticality * 10

A3I Phase III Training Assessment CSCI Page E- 14

full task training: time-to-do * (difficulty * difficulty + 1)

The "lsc-factor" is a multiplier based on estimate of cognitive difficulty of the task; both learning
subcategories and reasons for difficulty are taken into account in the rules which determine its
value. These rules assign a value from 1 to 4 on the following basis: if the task involves using
unaided concepts, procedures, rules, or principles and reasons for difficulty include a) decision on
mission or situation, b) coordination with other ship or ground party, or c) few or vague cues, a
value of 4, 3, or 2 is assigned, respectively; otherwise, lsc-factor is set to 1.

Some of the existing multiplication factors have been modified and some new ones added, notably
a factor to account for student familiarity with task and equipment. These factors are subject to
change as further testing is done; for current values, please see code listings for the file time.art in
Appendix E. One multiplication factor is noteworthy; currently set to a value of one, it is present in
all the formulas to compute ideal training time. It can be used to reduce or increase all training
times roughly proportionally.

After ideal training time has been computed, the second step occurs: the actual training time is
computed by adjusting ideal time with a multiplication factor whose value depends on the medium
assigned. For example, if budgetary restrictions require use of the actual system instead of a
dedicated part-task trainer for a psychomotor task, a multiplication factor increases training time
since the medium is than optimal.

4.2.2.6 Output Rules

TAM output is somewhat involved; nine rules control the scheduling and printing of each task and
six rules, one for each learning experience type, print actual results within each task. Notification
that a partial result (i.e., one learning experience) for a task is ready for printing is done by
ASSERT-DUPLICATE-RESULT, which asserts a "print-training" fact complete with all relevant
results after actual time has been computed. The duplication is necessary because we want to save
the original "training-time-actual" fact but we need to delete the extra (equivalent) fact during the
printing process. The rule PRINT-SUMMARY has minimum salience so it will not fire until all
results for all tasks have been posted; when it does fire, it asserts the "ta-setup-output" fact, which
triggers SETUP-OUTPUT-WINDOW. SETUP-OUTPUT-WINDOW reshapes windows, sets up
fonts and triggers PRINT-TITLE-AND-HEADER by asserting the "ta-headers" fact. After
printing title and headers, this rule initiates printing of task results by asserting the "print-TA-
results" fact. This starts up PRINT-RESULTS-OUTER-LOOP, which iterates through the task
list, identifying current task, one at a time. The training time sum is also set to zero here.
COLLECT-TASK-RESULTS is activated for the current task and schedules all results for the

current task by asserting "print-training*" facts for them; this rule also sums training time as it
collects these results. COLLECT-TASK-RESULTS retracts the "print-training" facts for the
current task as it asserts the new "print-training*" facts so that TAM can tell when it has collected
all facts for the current task by checking for the absence of "print-training" facts for that task. This
condition is detected by SCHEDULE-CURRENT-PRINT-TASK, which asserts a "print-marked-
results" fact for the current task. The "print-marked-results" facts cause the applicable print rules to
activate, with their order controlled by saliences so that results will be printed in order according to
learning experience type: explanation, demonstration, cognitive part task training, psychomotor
part task training, affective part task training, and finally full task training. A rule with lower
salience, PRINT-TOTAL-TIME, prints the total training time for the task.

A3IPhase III Training Assessment CSCI Page E-15

4.2.2.7 Output Functions

Several small, straightforward functions are used to assist with display of TAM's results.
Compute-leading-spaces allows TAM to fight-justify training times for tabular printout, and
display improves output appearance by removing hyphens from object names. For example, send-
radio-message becomes "SEND RADIO MESSAGE".

5.0 NOTES

5.1 Miscellaneous

Several lessons were learned related to setting up an ART program so that the justification network
gives a complete answer to the question: "Why was this fact asserted into the knowledge base?"
One must keep intermediate facts in the knowledge base to provide a trace of how results were
obtained; you can't always "clean up" by eliminating intermediate results. Also, when assignments
are made by default (that is, by checking for absence of facts in the knowledge base) as we do when
assigning media, the justification network does not show that we checked for the absence of those
facts.

Another programming consideration concerns checking for absence of some attribute value for
attributes with multiple values, such as cues, reasons for difficulty, etc. One must use (not (cues
dynamic-visual)) in the rule conditions to check for absence of dynamic visual cues rather than
(cues -dynamic-visual), because the latter matches every "cues" fact for the task which is not
dynamic-visual. This condition arises only for multi-valued attributes.

5.2 Limitations and Future Directions

The process of task collection is not automated; the user must enter manually each task with its
associated characteristics. It is possible that this process could be automated, at least in part, by
acquiring tasks directly from the mission activity history list and examining their performance and
context to deduce such characteristics as the nature of their cueing, frequency, time to perform, and
learning subcategories. Other characteristics, critical for the analysis, such as reasons for difficulty,
may be more difficult to infer. This area requires further investigation. Also, it may be difficult to
construct the learning hierarchy automatically from the mission decomposition tree since the two are
not identical. Automatic generation of enabling objectives would require a great deal of embedded
training design expertise.

However, if task data collection continues to be done manually, it should be noted that the task data
collection program is modular and it would be fairly simple to add new task attributes or new values
for a given attribute should the need arise in the future; some Lisp knowledge would be required.

A future direction which would yield valuable information for the training assessment module as
well as the MIDAS workstation as a whole is the development of a metric for operational device
complexity. This metric could be used, in part, to assess level of difficulty for a task (which is
required by TAM).

Currently, TAM does not handle a hierarchy of learning objectives (tasks); adding this feature
would greatly enhance TAM's results.

A3I Phase lII Training Assessment CSCI Page E.16

The ISD process could be carded further beyond simply assigning lesson elements for each task to
be gained; lesson elements could be grouped into lessons, which could then be grouped into
modules.

A rough cost of training could be calculated by adding to TAM the approximate cost per hour of the
media in the media pool.

A student skills model could be developed so that student skill level is not directly linked to each
task description, as is currently done. Student skill level would be compared to required skill level
and the analysis would predict training required to bring student from current skill level to required
skill level.

Continuation training and skill retention are not assessed currently.

In the future, if the training assessment is to be enlarged to handle a comprehensive set of mission
tasks, a true database should be used for task data so that a large number of tasks can be easily
handled, accessed, and modified by the user. Currently tasks reside in sequential order in a source
file created by the task data collection program.

TAM provides a framework into which domain-dependent rules can be inserted. A user could
insert rules embodying his or her own philosophy for assigning learning experiences, media, and
training times. Cost computations could be easily added to the rule-based system. At present, a
knowledge of the Symbolics editor Zmacs and ART syntax are required to add or modify rules.

A3I Phase III Training Assessment CSCI Page E-17

6.0 USERS GUIDE

6.1 Overview

Predicting training requirements in Phase 1JI is a two-step process. First, the user sets up a file
containing a set of tasks with their associated characteristics by loading and running the Task Data
Collection Program; the user then loads the Training Assessment Module (TAM) and the task data
file and runs TAM, which prints training requirements to the screen. Many different runs can be
made from the same task data file since the user selects input parameters and tasks for each run.

To show flow of control and data between the two programs, Figure 1 is repeated below.

taUSer inputs'_

sk data 3

ser inputs:

student level
budget level

task selections

I Program I

f
Task Data Collection =1 Task data file
Program - TDCP v| (ART-readable

(Lisp) Lobjects & facts)

Training Assessment
Module - TAM
(ART & Lisp)

Quasi-POl:

- learning experiences
- media

training times 1
(Just,,,cat,on1network (opt.)

Fig. 1 TRAININGASSESSMENT: CON TROLAND DATAFLOW

6.2 How to run the Task Data Collection Program (TDCP)

In the following description, some familiarity with the Symbolics environment and Genera 7.2 is
assumed. User entries are italicized.

6.2.1 Loading TDCP

A3I PhaseIII Training AssessmentCSCI PageE-18

Note that Genera 7.2 is required to run the TDCP; it will not run correctly under Genera 7.1. If
necessary, boot a Genera 7.2 world. Load TDCP from a Lisp Listener by entering:

Command: Load File b:>carolyn>tas>ui>load-TDCP.lisp

6.2.2 Running TDCP

Activate the menu-oriented task data collection program by invoking the function "ms-input":

Command: (tas-input)

This initiates the task data collection process by prompting for the name of a task. Enter the task
name into a menu form, press <return>, and mouse click on "Do it".

Note that the "pop-up" menus have a similar method of operation: the user selects one or more items
or types in a value, then mouses on "Do it" to enter the values into the program. "Abort" terminates
the current data entry menu.

Once a task name has been entered, the menu of task characteristics appears. It is recommended to
work through these attributes from top to bottom; all must be entered, except for TYPES, which is
currently inactive. Selection of an attribute, such as CUES, brings up a menu of all currently
allowable values for that attribute. Select any and all values which are salient task characteristics,
then enter "Do it". For a more complete discussion of task attributes and values, please see the
TASCS User's Guide. When all required values have been entered, select "DONE" from the menu.

The final information gathered about the current task is its degree of familiarity for each of a set of
student types. (Currently the student types are listed in a variable, *student-list*, in the file "input-
driver.lisp".) Three categories are available:
(1) Old task, old equipment (no further training required)
(2) Old task, new equipment
(3) New task, new equipment

Specifying familiarity level concludes the characterization for the current task; the user is then
prompted for a new task and the process is repeated. To terminate collection of task data, enter
"nil" for the task name. Clicking on the Lisp listener window stops the program, which has
formatted the task data into ART-readable facts and objects and written it to a task data file to be
loaded with TAM.

6.3 How to run the Training Assessment Module (TAM)

A brief introduction to ART is given in the next section; for more information, the user is referred to
ART Tutorials 1 and 3 and the ART Reference Manual.

6.3.1 Booting the ART world

If necessary, cold boot the machine with Genera 7.2 and ART as follows:
<select>-L to get to Lisp Listener
Command: Halt Machine
FEP: boot art.boot (this takes a few minutes)

A3I Phase III Training Assessment CSCI Page E-19

Command: Login <user-name>

Press <select>-A to get to ART.

6.3.2 Getting around in ART

The left mouse button is used to select things like menu options, facts and rules from networks, etc.
This usually has the effect of taking you down into the menu tree. The middle mouse button takes
you back up; double middle (or shift middle) click with cursor arrow positioned on root menu
window always brings you up all the way to the root menu, while a single middle click pops you up
one level toward the root menu. (This description implies the menu space is viewed as an inverted
tree, with the root menu at the top.)

Note that, if for some reason, ART does not respond to mouse clicks in ROOT menu, you can also
enter root commands by typing them into the COMMAND window. (To enter commands into
COMMAND window, position cursor over COMMAND window and click left before typing
command.)

6.3.3 Loading TAM

First, click left on clear in ROOT window (in upper right comer of screen) to clear ART. Click left
on load, then enter (in response to prompt in command window):

b :>carolyn> TAM > TAM-loadfile.lisp

Loading TAM takes a few minutes. Note that the task data is also loaded at this time. After the load
process is finished, click left on reset to reset ART; this is required before each run.

6.3.4 Running TAM

There are a variety of options for viewing the actions of this KBS (Knowledge Based System)
during the run; the following are simply suggestions. You may turn on viewing of FACTS and
AGENDA by clicking on watch; click left on facts (should say YES) and agenda (should also say
YES). Shape AGENDA window as prompted; suggested placement is in lower right section of
screen. Note that watching various aspects of TAM as it runs slows down the run; this is especially
true of the agenda.

The following steps set up and start a run. Go to the root menu by clicking shift-middle on root
menu window; click left on reset if this has not been done; click left on browse, left on assert, and
type "(TA)". CTA" stands for Training Assessment.) This interaction will appear in the command
window in upper left of screen and place the assertion (TA) into the fact base; this sets up a run of
TAM. Obtain root menu in root menu window by clicking shift-middle in root menu window; then
click left on run.

Select the incoming student training level and the budget level in response to the menu prompts.
Then select the desired tasks from the task list menu and click on "Do it".

If agenda has been turned on during run, the agenda window shows rules being placed on the
agenda when their conditions are satisfied. When rules come to top of agenda, they fire and place
more assertions in the fact base. In this case, they are assigning learning experiences, media, and
training times for the selected tasks.

A3I Phase III Training Assessment CSCI Page E- 2o

At the conclusion of the run, an output window appears with the training requirements listed in
tabular form. See Appendix D for a sample output display. For each task selected, a set of learning
experiences, media, and training times appears; also, for each task, training times are summed over
the learning experiences to produce a total training time for each task.

You can see how ART represents the task objects, or schemata as follows. Click left on browse in
root menu window in upper right comer of screen, then click left on schemata, scroll till the desired
task name appears, then click left on it. Click left on text to display ART code for the task. This
shows the task characteristics, such as cues, systems, reasons for difficulty, task criticality,
frequency of performance, etc., and their associated values.

6.3.5 Justification with ART

You can have TAM explain its reasoning by showing a justification network on a selected fact. A
good way to access a specific fact in the fact base is to collect all facts having the desired relation;
then select the desired fact from this subset. "Relation" refers to the first term in the fact. In the
case of TAM, TRAINING-LE relations refer to assignment of learning experiences, TRAINING-
MEDIUM relations to media, TRAINING-TIME-IDEAL relations to first approximation of training
time, and TRAINING-TIME-ACTUAL relations to final computation of training time, with media
taken into account.

To bring up a justification network, perform the following steps: From root menu, click left on
browse, click left on relations, scroll to desired relation and click left. This brings up all the facts
for the selected relation; click left on the desired fact to make it the current fact, and click left on
justification. This brings up a justification network; if necessary, define window boundaries for the
justification window. A sample justification network appears in Appendix D.

The justification network is a directed graph of interconnecting facts and rules. Each rule has on its
left the facts which satisfied its conditions; arrows point from those facts to the rule. Any facts
asserted by the rule are shown on the right with arrows pointing from the rule to the fact(s).

You can list facts which led to the current fact by clicking left on justifiers; also can show facts
"downstream" from current fact by clicking on justified. Change the current fact by clicking on a
different fact in the network. You can also show the text of a rule by clicking on the rule's box in
the network; this selects it into root menu window. Then scroll till text option appears and click on
it; shape window for text display if necessary.

A3I Phase III Training Assessment CSCI Page EA-I

7.0 APPENDICES

A. Glossary of Terms, Acronyms, or Abbreviations

ART

HFE
ISD
KBS
MIDAS
POI
TAM
TASCS
TDCP

Automated Reasoning Tool, an expert system building too1 by Inference
Corp.
Human Factors Engineering
Instructional Systems Design
Knowledge Based System
Man-machine Interface Design/Analysis System
Program Of Instruction
Training Assessment Module
Training Analysis Support Computer System
Task Data Collection Program

A3I Phase III Training Assessment CSCI Page EB-I

B. Module Hierarchy Charts

A3I Phase III Training Assessment CSCI Page EB.2

B.I Task Data Collection Program (TDCP)

E

|

el
.1

e-

w

i

|

0

oE .-= E
_'- E- l
o_. 6>.

!

_ '-,. 0,._ _

A3I Phase III Training Assessment CSCI Page EB-3

B.2 Training Assessment Module (TAM)

A

!

O

e-

E
t_
tn

t_
tn

e-
,1

e-
,m

m
t_

t--

I-

l.__

¢6
j-
u

1.-
O
L_

m

i1

-I-

ra

O

x
*l

"U
C

|

'*" L. a..._ O.J

-' o, o-. • _o_

i

o _CI.o c

m_ E

2,_ _'-
, O'J

m x= a_ 1"_ O.

A3I Phase III Training Assessment CSCI Page EC-I

C. Sample Task Data File

A3I Phase IH Training Assessment CSCI

B ARRACUDA:>carolyn>tas>ui>obj.defschema.art.32

Page EC.2

2/09/89 15:46:17 Page 1

;;; -*-MODE: ART: BASE: I0.: PACKAGE: ART-USER-*-

(defschema SEND-RADIO-MESSAGE-WITMOUT-REMOTE

_instance-of abJec_ive)

(CUES TACTILE SOUND STILL-VISUAL)

(TYPES)

(SYSTEMS FLIGHT-CONTROLS COMMUNICATIONS)

(RFD SIMULTANEOUS-TASKS DECISION-ON-SITUATION LITERAL-MEMORY OTHER-SHIP-OR-GROUND-PARTY-COORD)

(DIFFICULTY-RATING 3}

(RFSC NO-DEATH NO-INJURY NO-DAMAGE)

(SAFETY-CRIT-RATING I)

(MISSION-CRIT-RATING 3)

(FREQUENCY 4)

(TIME-TO-DO 0.8333333)

(LSCS VOICE-COMMUNICATION AURAL-DETECTION-CONSPICUOUS GROSS-MOTOR-I-OR-2-D

USE-UNAIDED-PROCEDURE USE-UNAIDED-RULE REMEMBER-FACT)

)

(deffacts newness-SEND-RAD!O-MESSAGE-WITHOUT-REMOTE

(NEWNESS SEND-RADIO-MESSAGE-WITHOUT-REMOTE UHT O-N)

(NEWNESS SEND-RADIO-MESSAGE-WITHOUT-REMOTE AH-64 O-O))

_;; ..

(defschema SEND-RADIO-MESSAGE-WITH-REMOTE

(instance-of objective)

(CUES TACTILE SOUND STILL-VISUAL)

(TYPES)

(SYSTEMS COMMUNICATIONS FLIGHT-CONTROLS)

(RFD DECISION-ON-SITUATION LITERAL-MEMORY OTHER-SHIP-OR-GROUND-PARTY-COORD

PRECISE-MANIPULATION)

(DIFFICULTY-RATING 2)

(RFSC NO-DEATH NO-INJURY NO-DAMAGE)

(SAFETY-CRIT-RATING 1)

(MISSION-CR!T-RATING 3)

(FREQUENCY 4)

(TIME-TO-DO 0.75)

(LSCS VOICE-COMMUNICATION AURAL-DETECTION-CONSPICUOUS FINE-MOTOR-MULTI-D USE-UNAIDED-PROCEDURE

USE-UNAIDED-RULE REMEMBER-FACT)

)

(deffacts newness-SEND-RADIO-MESSAGE-W!TH-REMOTE

(NEWNESS SEND-RADIO-MESSAGE-WITH-REMOTE UHT O-N)

(NEWNESS SEND-RADIO-MESSAGE-WITH-REMOTE AH-64 O-O))

(defschema AUTO-TARGET-HANDOVER

(instance-of objective)

(CUES TACTILE SOUND DYNAMIO-VlSUAL DISTANT-FOV WIDE-FOV)

(TYPES)

(SYSTEMS)

(RFD ANXIETY OTHER-SHIP/GROUND-PARTY-COORD SIMULTANEOUS-TASKS ANTICIPATION LIMITED-TIME

POSITION-ENERGY DECISION-ON-EQUIPMENT DECISION-ON-SITUATION MANY-CONTROLS)

(DIFFICULTY-RATING 4)

(RFSC DEATH-TO-SEVERAL)

(SAFETY-CRIT-RATING 5)

(MISSION-CRIT-RATING 5)

(FREQUENCY 3)

(TIME-TO-DO 1.0)

(LSCS AURAL-DETECTION-CONSPICUOUS VISUAL-DETECTION-SUBTLE FINE-MOTOR-MULTI-D

USE-UNAIDED-PRINCIPLE USE-AIDED-PROCEDURE REMEMBER-FACT)

)

(deffacts newness-AUTO-TARGET-HANDOVER

(NEWNESS AUTO-TARGET-HANDOVER UHT N-N)

(NEWNESS AUTO-TARGET-HANDOVER AH-64 O-O))

;;; ..

A3I Phase III Training Assessment CSCI

BARRACUDA:>carolyn>tas>ui>obj-defschema.art.32

Page EC-3

2/09/89 15:46:17 Page 2

de fschema ENGAGE-TARGET-WI TH-275-FFAR-NIGHT- 6101

(instance-of objective)

(CUES TACTILE PHOTO-DETAIL WIDE-FOV COLOR)

(TYPES)

(SYSTEMS WEAPON-DELIVERY FLIGHT-CONTROLS)

(RFD SIMULTANEOUS-TASKS TOO-MANY-CUES MANY-CONTROLS}

(DIFFICULTY-RATING 4)

(RFSC NO-DAMAGE)

(SAFETY-CRIT-RATING I)

(MISSION-CRIT-RATING 4)

(FREQUENCY 4)

(TIME-TO-DO 1.0)

(LSCS VISUAL-DETECTION-SUBTLE FINE-MOTOR-I-OR-2-D REMEMBER-FACT USE-UNAIDED-PROCEDURE

USE-UNAIDED-RULE)

de ffacts newne s s-ENGAGE- TARGET-WI TH- 275-FFAR-NI GHT- 6101

(NEWNESS ENGAGE-TARGET-WITH-275-FFAR-NIGHT-6101 UHT N-N)

(NEWNESS ENGAGE-TARGET-WITH-275-FFAR-NIGHT-6101 AH-64 O-O))

; ; ; ..

(defschema ENGAGE-TARGET-WITH-30-MM-GUN-NIGHT-6081

(instance-of objective)

(CUES TACTILE PHOTO-DETAIL WIDE-FOV COLOR)

(TYPES)

(SYSTEMS WEAPON-DELIVERY FLIGHT-CONTROLS)

(RFD SIMULTANEOUS-TASKS TOO-MANY-CUES MANY-CONTROLS)

(DIFFICULTY-RATING 4)

(RFSC NO-DAMAGE)

(SAFETY-CHIT-RATING I)

(MISSION-CRIT-RATING 4)

(FREQUENCY 4)

{TIME-TO-DO 0.6666667)

(LSCS VISUAL-DETECTION-SUBTLE FINE-MOTOR-I-OR-2-D REMEMBER-FACT USE-UNAIDED-PROCEDURE

USE-UNAIDED-RULE)

)

(deffacts newness-ENGAGE-TARGET-WITH-30-MM-GUN-NIGHT-6081

(NEWNESS ENGAGE-TARGET-WITH-30-MM-GUN-NIGHT-6081 UHT N-N)

(NEWNESS ENGAGE-TARGET-WITH-30-MM-GUN-NIGHT-6081 AH-64 O-O))

;;,- ..

defschema ENGAGE-TARGET-WITH-HELLFIRE-NIGHT-6080

(instance-of objective)

(CUES TACTILE PHOTO-DETAIL WIDE-FOV COLOR)

(TYPES)

(SYSTEMS WEAPON-DELIVERY FLIGHT-CONTROLS)

(RFD ANXIETY SYSTEM-DESIGN SIMULTANEOUS-TASKS DECISION-ON-EQUIPMENT TOO-MANY-CUES

MANY-CONTROLS POSITION-ENERGY PRECISE-MANIPULATION)

(DIFFICULTY-RATING 5)

(RFSC NO-DAMAGE)

(SAFETY-CRIT-RATING I)

(MISSION-CRIT-RATING 4)

(FREQUENCY 4)

(TIME-TO-DO 1.25)

(LSCS VISUAL-DETECTION-SUBTLE FINE-MOTOH-I-OR-2-D USE-UNAIDED-PROCEDURE USE-UNAIDED-RULE

REMEMBER-CONCEPT)

)

(deffacts newness-ENGAGE-TARGET-WITH-HELLFIRE-NIGHT-6080

(NEWNESS ENGAGE-TARGET-WITH-HELLFIRE-NIGHT-6080 UHT N-N)

(NEWNESS ENGAGE-TARGET-WITH-HELLFIRE-NIGHT-6080 AH-64 O-O))

; ; ; ..

(defschema PERFORM-ECU-LOCKOUT-OPS-4007

(instance-of objective)

(CUES COLOR DYNAMIC-VISUAL)

(TYPES)

(SYSTEMS FLIGHT-CONTROLS FLIGHT-INSTRUMENTS ENGINE-SYSTEMS)

(RFD SPECIFIC-SEQUENCE DECISION-ON-EQUIPMENT)

A3I Phase IH Training Assessment CSCI

B ARRACUDA:>carolyn>tas>ui>obj-defschema.art.32

Page EC.4

2/09/89 15:46:17 Page 3

(DIFFICULTY-RATING 2)

(RFSC MAJOR-DAMAGE)

(SAFETY-CRIT-RATING 3)

(MISSION-CRIT-RATING 3)

(FREQUENCY I)

(TIME-TO-DO 0.25)

(LSCS VISUAL-DETECTION-CONSPICUOUS REMEMBER-PROCEDURE)

(deffacts newne s s-PERFORM-ECU-LOCKOUT-OP S- 4 O 07

(NEWNESS PERFORM-ECU-LOCKOUT-OPS-4007 UHT N-N)

(NEWNESS PERFORM-ECU-LOCKOUT-OPS-4007 AH-64 O-N))

; ; ; ..

(defschema PERFORM-OGE-HOVER-WITH-SINGLE-ENG-FAILURE-4001

(instance-of objective)

(CUES DISTANT-FOV WIDE-FOV DYNAMIC-VISUAL)

(TYPES)

(SYSTEMS ENGINE-SYSTEMS FLIGHT-CONTROLS)

(RFD ANXIETY DECISION-ON-EQUIPMENT PRECISE-MANIPULATION POSITION-ENERGY)

(DIFFICULTY-RATING 4)

(RFSC NO-INJURY NO-DAMAGE)

(SAFETY-CRIT-RATING I)

(MISSION-CRIT-RATING 2)

(FREQUENCY 2)

(TIME-TO-DO 0.75)

(LSCS VISUAL-DETECTION-CONSPICUOUS FINE-MOTOR-!-OR-2-D USE-UNAIDED-PRINCIPLE REMEMBER-FACT)

)

(deffacts newness-PERFORM-OGE-NOVER-WITH-SINGLE-ENG-FAILURE-4001

(NEWNESS PERFORM-OGE-HOVER-WITH-SINGLE-ENG-FAILURE-4001 UHT N-N)

(NEWNESS PERFORM-OGE-HOVER-WITH-SINGLE-ENG-FAILURE-4001 AH-64 O-N))

; ; ; ..

(defschema PERFORM-SLOPE-OPS-VMC-3511

instance-of objective)

CUES MOTION DISTANT-FOV WIDE-FOV DYNAMIC-VISUAL)

TYPES)

SYSTEMS POWER-TRAIN-SYSTEM FLIGHT-CONTROLS)

RFD VAGUE-CUES PRECISE-MANIPULATION POSITION-ENERGY)

DIFFICULTY-RATING 3)

RFSC MINOR-INJURY MAJOR-DAMAGE)

SAFETY-CRIT-RATING 3)

MISSION-CRIT-RATING 4)

FREQUENCY 4)

TIME-TO-DO 0.41666666)

(LSCS VISUAL-DETECTION-CONSPICUOUS FINE-MOTOR-MULTI-D REMEMBER-RULE)

)

(deffacts newness-PERFORM-SLOPE-OPS-VMC-3511

(NEWNESS PERFORM-SLOPE-OPS-VMC-3511 UHT O-N)

(NEWNESS PERFORM-SLOPE-OPS-VMC-3511 AH-64 O-N))

;;;

(defschema START-ENGINE-WITH-PRESS-AIR-SOURCE-1607

instance-of objective)

CUES SOUND DYNAMIC-VISUAL)

TYPES)

SYSTEMS ENGINE-SYSTEMS)

RFD DECISION-ON-EQUIPMENT)

DIFFICULTY-RATING i)

RFSC MINOR-DAMAGE)

SAFETY-CRIT-RATING 2)

MISSION-CRIT-RATING 2)

(FREQUENCY 3)

(TIME-TO-DO 0.25)

(LSCS AURAL-DETECTION-SUBTLE VISUAL-DETECTION-CONSPICUOUS USE-AIDED-PROCEDURE)

)

(deffacts newness-START-ENGINE-WITH-PRESS-AIR-SOURCE-1607

A3I Phase III Training Assessment CSCI Page EC-5

BARRACUDA:>carolyn>tas>ui>obj-defschema.art.32 2/09/89 15:46:17 Page 4

(NEWNESS START-ENGINE-WITH-PRESS-AIR-SOURCE-1607 UHT O-N)

(NEWNESS START-ENGINE-WITH-PRESS-AIR-SOURCE-1607 AM-64 0-O))

; ; ; ..

A3I Phase Ill Training Assessment CSCI Page ED-1

D. Sample Displays

D.1 Task Attribute Input Displays from TDCP

Please enter task]3ame [Tnsk name: SEHI]-RRDIO-MESSRGE-WITH-REMOTE

Exit r-I

FOR T_4$K SELECT-RADIO, qHOOSE ONE CHARACTERISTIC TO ENTER NEXT

CUES
TYPES

SYSTEMS
REASONS FOR DIFFICULTY

DIFFICULTY RATING
REASONS FOR SAFETY CRITICALITY

MISSION CRITICALITY RATING
FREQUENCY
TIME TO DO

LEARNING SUBCATEGORIES

done

|

CUES FOR TRSK: SEND-RADIO-MESSS_-WITH-REMOTE |

I. Dynamic Visual
Wide Field of View Distant (Out the Window) Field of View

Color Photogra_ DetailMotion
F/W4W_

Select SYSTEMS for task: SEND-RADIO-MESSAGE-WITH-REMOTE
Do it
Exit

1. Helicopter

Emergency equipment
Engine systems

Fuel system

Hydraulic systems
Power train system

Environmental control systems
Power supply and distribution system

Lighting
Flight Instruments

2. Avionics

Navigation
Sensors

3. Mission Equipment

Weapon delivery
Electronic counter measures

A3I Phase III Training Assessment CSCI Page ED-2

D. 1 Task Attribute Input Displays from TDCP, cont.

RERSDH5FOR DIFFICULTY FOR TRSK: 5EHI]-RRBI0-M£SSRGE-WITH-REMOTE
Do it

None

1. PSYCHOMOTOR

Exertion
Appreciation of Position and Ener_ry

m_
Many Controls

2. CUES

Too Many Cues
Few Cues

Distracting Cues
Vague Cues

3. COGNITION

Decision on Mission

Decision on Equipment
Conceptual Memory

4. TIME SEQUENCE

Limited Time
Lengthy

Anticipation
Specific Sequence

Sire ultaneotm Tasks

5, MISCELLANEOUS

Unfamiliarity
Anxiety

Engineering System Daslgn

[Difficulty Rating for

Difficulty Rotqng: I 2 _ S.ENQ-RADIO-MESSAGE-WITH-REMOTE]

4 s

E.i,[] I

REASONS FOR SAFETY CRITICALITY for task: _IEND-RADIO-MESSAGE-WITH-REMOTE
it None

DAMAGE INJURY DEATH

No DeathiNo-Damage INs ! nTu ry
Minor Damage
Major Damage

Catastrophic Dam_q_e

Minor Injury
Major Injury

MaJ Injury to S.veral People Death to 1 parson
Death to several people

Enter MISSION CRITICALITY ratin_K for task: SEND-RADIO-MESSAGE-WITH-REMOTE
Do it None

(RATING)

I
2
3
4
5

CATEGORY CRITICALITY RATING

No mission effect 1
Minor added work 2

s
Mission partially ineffective 4

Mission non-effective 5

A3I Phase III Training Assessment CSCI Page ED-3

D.1 Task Attribute Input Displays from TDCP, cont.

Estimate time to perform t_sk SENQ-RADIO-MESSAGE-WITH-REMOTE[

HOURS : gB

Exit 0 , • |

'IEst_mateFREQUEMCY of oerfommance for task SEHD-RRDIO-MESSRCE-WITH-R_MOTE

L An occasional flight (or less)
Every few flights

Once per flight
Several times per flight

/111during the flight

.LE.ARNING SUBCATEGORIES (COGNITIVEI for t,_s]_ SEND-RADIO-MESSAGE-WITH-REMOTE
it None

Remember concept Remember procedure
Use aided concept Use aided procedure

Use unaided concept [i/_(..ilt,_16[_m,Jl,i,_.-i, tt!t_

Remember rule
Use aided rule

Remember principle
Use aided principle

Use unaided principle

LEARNING SUBCATI_OORIES (PSYCHOMOTOR) for task: _END-RADIO-MESSAGE-WITH-REMOTE
Do it None

Gross motor - one or two dimensions Gross motor - multl-d[menslonai
Fine motor - one or two dimensions I_,z._.z.zo)._,+.d'_:ll,*r_,¢-.z,_-d

LEARNING SUBCATEGORIES (MISCELLANEOUS) for task: SEND-RADIO-MESSAGE-WITH-REMOTE
Do if
None

Visual detection - Conspicuous
Visual detection - Subtle

[._|11 !'_ I [['_i_J'_][[*] 1 8111[l] I _l I] tbl I (111 _]

Aural detection - Subtle

Attitudinal

TASK SE'ND-RA,_IO-M-_SSAGE-WITH-REMOTE AN_) ETU_ENT AH-64, INDICAT,_' DECREE OF FAM/_ Y,ARITYJ

IOld task, old equipment
Old task, new equipment

New task, new equipment

FOR TASK SEND-RADIO-MESSAGE-WITH-REMOTE AND STUDENT UHT, INDICATe' DEGREE OF FAMILI4RITY IIOld task, old equipment
Old task, new equipment

New task, new equipment

A3I Phase III Training Assessment CSCI Page ED-4

D.2 Sample task object with characteristics

3

z__
3:_,

C)tn

&

iiiiiill_l

A3I Phase IH Training Assessment CSCI Page ED-5

D.3 Sample rules

UJ

ttJ
.J

_g

o.m_. c m_ @
.,1_ ip t,,. o _

'4 ! r

(llll|lllll

IJllllllII

||" °11 o

i=l'._@ I i._ i-i_

ul o :,.i,..i,1. {. i I.u {. i. o...... °.
=:w.w. ^(_@- i I _@- ; i

v

A3I Phase III Training Assessment CSCI Page ED-6

D.3 Sample rules, cont.

_o

v

T_

____.__.._:...-

A3I Phase III Training Assessment CSCI Page ED-7

D.4 Sample agenda

A3I PhaseIlI Training AssessmentCSCI Page ED-8

D.5 Output screen

I

Z
W
E

W

Z

i,,.-

ml
0_

m

" I

_ z

_ M

,,, a i [

_ _ I _
l,u ¢3

I

0_

x_- x

0.1 Ik-I:11,,.J

A3I Phase III Training Assessment CSCI Page ED-9

D.6 Justification networks

A3I Phase Iii Training Assessment CSCI Page ED-10

D.6 Justification networks, cont.

Annex F

Army-NASA Aircrew/Aircraft Integration Program

A3I

Software Detailed Design Document:
Aero/Guidance

prepared by

Alex Chiu

December 1988

Table of Contents

1.0 INTRODUCTION ... F-1
1.1 Identification .. F- 1

1.2 Scope ... F-1
1.3 Purpose .. F- 1

2.0 RELATED DOCUMENTATION ... F-1

2.1 Applicable Documents ... F- 1
2.2 Information Documents .. F-2

3.0 REQUIREMENTS AND DESIGN APPROACH ... F-2
3.1 Requirements and Rationale ... F-2
3.2 Hardware Environment .. F-4
3.3 Software Environment ... F-4

4.0 DETAILED DESIGN DESCRIPTION ... F-5

4.1 Organization ... F-5
4.2 Unit Detailed Design ... F-7

4.2. l openfiles.f .. F-7
4.2.2 tdblkdatx.f ... F-7
4.2.3 tdinput.f .. F°7
4.2.4 fly.f ... F-8
4.2.5 tguidap2x.f ... F-8
4.2.6 newpsix.f .. F-8
4.2.7 tmangx.f .. F-9
4.2.8 imwind.c ... F-9
4.2.9 animate.c ... F-9
4.2.10 simdata.c .. F-9

4.2.11 path.c .. F-9
4.2.12 mgcom.c .. F-10
4.2.13 mgiedit.c .. F- 10
4.2.14 checkerboard.2 ... F-10
4.2.15 waypoints ... F-10
4.2.16 animateflt.doc .. F- 10
4.2.17 animate.menu .. F- 11

4.2.18 message.h .. F-11
4.2.19 message.common .. F-f1
4.2.20 heli.h .. F- 11
4.2.21 hell.common ... F-11

5.0 NOTES ... F- 12
5.1 Miscellaneous ... F- 12
5.2 Limitations ... F-12
5.3 Future Directions ... F- 12

6.0 USERS GUIDE ... F-12

A3I Phase HI Aero/Guidance CSCI Page F-1

1.0 INTRODUCTION

1.1 Identification

This document establishes the requirements and detailed design of the Flight Dynamics/Guidance
Computer Software Configuration Item (CSCI), which forms a part of the A3I Computer Program
System. Descriptions of the detailed processing requirements, structure, I/O, and control are
provided for each lower level Computer Software Component (CSC), unit, or function contained
within the CSCI.

1.2 Scope

This document is primarily focused on the Phase III capabilities of the flight dynamics/guidance
CSCI -- particularly the integration of the Analytical Mechanics Associates (AMA) developed
Fortran code -- TGUIDAP2/TMAN with the A3I Views CSCI. Detailed descriptions of the AMA
developed code is not included herein. Rather, the reader is referred to the AMA Report 252-3
listed in Section 2.1 -- A31 Autopilot/Guidance Program Homing�Path Guidance with Turn-
Straight-Turn Option. It is assumed that the reader is familiar with the simple concepts of
aerodynamics, the basic theory of aircraft stability and control, and UNIX, Fortran, and C.

1.3 Purpose

The purpose of the Flight Dynamics/Guidance CSCI is to provide representative models of a
generalized helicopter aerodynamics quantities and guidance capabilities for use in the A3I
simulation. Previous development phases contained simplified, but somewhat inadequate models
of these functions for A3I's purposes. Analytical Mechanics Associates has developed a well-
tested and accepted Fortran model of helicopter dynamics and guidance previously used on VAX
computers. This model is linear and partly decoupled, in the sense that the collective control has no
effect on the yaw, pitch, or roll movement, and without taking into consideration the wind effect
on the helicopter behavior. This model has been improved with the addition of a Turn-Straight-
Turn guidance scheme and ported to the A3rs Silicon Graphics Workstations. The Flight
Dynamics/Guidance CSCI also serves as a method to represent to the Symbolics pilot model the
control inputs and their durations needed to maneuver the simulated craft to the desired waypoints
contained in the mission.

2.0 RELATED DOCUMENTATION

2.1 Applicable Documents

A. Gessow, G. C. Myers, Jr., Aerodynamics of the Helicopter, Federick Ungar Publishing Co.,
New York, December, 1952

M. S. Lewis, E. W. Aiken, Piloted Simulation of One-On-One Helicopter Air Combat at NOE
Flight Levels, USAAVSCOM Technical Report 85-A-2, NASA Ames Research Center, Moffett
Field, California, April, 1985

Anil V. Phatak, Hien H Tran, A3I Autopilot/Guidance Program Homing�Path Guidance with
Turn-Straight-Turn Option (Version TGUIDAP2) AMA Report 252-3, Mountain View, California,
March, 1988

A3I Phase III Aero/Guidance CSCI Page F-2

Andrew P. Lui, A3I Phase III Views, A3I Project, NASA Ames Research Center, Moffett Field,
California, December, 1988

2.2 Information Documents

Silicon Graphics Inc., IRIS4D Series FORTRAN Programming Language, Version 1.0,
Mountain View, California, 1988

Silicon Graphics Inc., IIRIS GTX : A Technical Report, Revision 2, Mountain View, California,
1988

Software Systems Inc., MultiGen Reference Manual, Version 1.0, San Jose, California, 1988

3.0 REQUIREMENTS AND DESIGN APPROACH

3.1 Requirements and Rationale

One of A3rs main goals is to replace the "man-in-the-loop" of ordinary manned simulations with
models and principles of human performance in order to evaluate potential cockpit designs.
Because such a large portion of aircrew tasks involve the actual "flying" of the vehicle, we need to
adopt a representative model of helicopter flight dynamics, as well as a model of the guidance and
navigation capabilities a pilot would use to employ the vehicle. Furthermore, because helicopter
flight dynamics and controls are not commonly understood by the "typical" crew station designers
(notional users of A3I), we felt it is beneficial to demonstrate visually the controls and how they
affect the flight dynamics.

Because A3I's focus is on crew station design -- not helicopter aerodynamics or propulsion
design, high levels of fidelity were not deemed necessary. However, because operational crew
station design certainly cannot be achieved by neglecting the controls and tasks involved with
"flying", a reasonable level of sophistication was necessary. Therefore, a flight dynamics/guidance
model, which should be relatively easy to fly and yet exhibits all the major dynamic characteristics
of a typical helicopter, is needed. The current Flight Dynamics/Guidance CSCI was developed by
integrating TGUIDAP2/TMAN, written in Fortran by AMA, with the A3I's Views CSCI, because
TGUIDAP2/TMAN alone does not render any graphics display capabilities. The current model
represents rather generic helicopter dynamics, intended to be tailored by potential users (or replaced
with a similar model) to match the performance of the vehicle under development.

TGUIDAP2/TMAN adopts the widely-used Euler approach to the helicopter orientation which
involves two sets of right-handed orthogonal axes -- body axes and earth axes. Body axes consist
of an axis system fixed in the helicopter, with the origin at its center of gravity and the x axis
aligned with the fuselage reference line. Body axes thus move in space and rotate with the
helicopter. Earth axes comprise a set of axes defined with respect to the earth, with the origin at a
suitable point, the x axis pointing North, the y axis East, and the z axis down. Unlike body axes,
earth axes are inertial axes. They are used as reference axes for position and attitude. Fig. 3.1
depicts the system of body axes used in TGUIDAP2/TMAN and the three rotational angles -- yaw,
pitch, and roll.

A3I Phase HI Aero/Guidance CSCI Page F-3

Z

Y X

x ,Yaw

Z

Fig. 3.1

The current implementation controls yaw, pitch, roll, and altitude through conventional maneuver,
i.e., pedals, cyclic, and collective. The Four axis controllers, envisioned for future aircraft are not
currently supported. The pedals are used to fix the attitude of the helicopter in rotation about the
vertical axis, permitting the pilot to point the helicopter in any horizontal direction, namely, the yaw
attitude. The cyclic is used for longitudinal and lateral control, namely, the pitch and roll attitude.
The collective is used for altitude control of the helicopter in the vertical direction. The pilot's yaw,
pitch, roll, and vertical control inputs are expressed in terms of percent of full scale and are limited
in the range (-50%,50%).

In TGUDIAP2/TMAN, the coordinates x, y, and z are expressed in terms of feet, roll, pitch, and
yaw in terms of degrees, and the translational and rotational velocity components in terms of ft/sec
and rad/sec, respectively. The airspeed is expressed in terms of knots -- one knot is approximately
1.69 ft/sec. The Euler angles take the following range of values

roll : (-x, x),
pitch : (-x/2, x/2),

A3I Phase HI Aero/Guidance CSCI Page F-4

yaw : (-_, 7r).

While the Flight Dynamics/Guidance CSCI used for the A3I Phase II simulation resided on a
Symbolics 3675, Phase III efforts moved this CSCI to an IRIS/4D 70G. One of the reasons for
this change was that the IRIS/4D 70G has a better Fortran environment than the Symbolics 3675.
Due to the autonomous nature of the flight dynamics/guidance model, the aircraft traversed all the
waypoints in Phase II simulation without interruption. The lack of interruptability makes it difficult
for the simulated pilot to re-route the flight path when necessary, and thus imposes artificial
constraints on the mission decomposition and simulation. It also lacked the capability for the pilot
to directly alter the controls. Therefore, in spite of the fact that it provided flight dynamics
information to other A3I CSCIs, it needed to be enhanced to interact with other CSCIs more
flexibly. This became one of the guidelines for the Phase III flight dynamics/guidance
development. In fact, new capabilities have been implemented on top of the AMA developed code
which represent continuing efforts toward rendering a better flight dynamics/guidance model to
meet evolving A3I requirements.

3.2 Hardware Environment

The Phase III flight dynamics/guidance development was originally done on a Silicon Graphics
IRIS/4D 70G running UNIX System V with Berkeley extension BSD 4.3 and the 4Sight
windowing system. This IRIS/4D 70G was then upgraded to 70GTX with parallel processing
capability and the Phase III flight dynamics/guidance CSCI has been ported accordingly. For more
information on the 70GTX, refer to the relevant document listed in Section 2.2.

3.3 Software Environment

The Flight Dynamics/Guidance CSCI consists of two CSCs, namely, TGUIDAP2 and TMAN.
Prior to running TGUIDAP24TMAN stand-alone, a set of waypoints has to be specified; normally,
the specification is made by the designer during the mission planning phase using Symbolics. For
each waypoint, five items have to be specified -- x, y, z, airspeed, and heading. The main routine
of TGUIDAP2/TMAN has a do loop which iterates the following process until all the waypoints
have been traversed: First, TGUIDAP2 is invoked to compute the control inputs based on the
current position and the next waypoint. With these control inputs, TMAN integrates the three
rotational equations for body-axis roll, pitch, and yaw accelerations to yield the body-axis angular
rates, converts the body-axis angular rates to Euler angular rates, and integrates the Euler angular
rates to obtain Euler angles. The elements of the body axis-earth axis transformation matrix T are
then formed using the sines and cosines of the Euler angles. TMAN then transforms the body-axis
longitudinal, lateral, and vertical forces to earth-axis forces using the transformation matrix T.
Accelerations in the earth axis system are then calculated from the earth axis forces. Integrating
these accelerations yields the velocities, which are in turn integrated to yield the translational
displacements. It is necessary to transform the earth-referenced velocity components to the body
axis velocity components because these will be used in the next cycle. The time step for all the
integrations performed is a tick, which was set to one tenth of a second for Phase III simulation.
The above solution sequence of the Euler approach is summarized as follows.

Body axis angular accelerations --> body axis angular rates --> Euler angular rates --> Euler angles
--> body axis-earth axis transformation matrix --> body axis forces --> body axis accelerations -->
body axis velocity components --> earth axis velocity components --> earth axis displacements

For more detail of the Euler approach, refer to the second reference listed in Section 2.1.

A3I Phase HI Aero/Guidance CSCI Page F-5

As mentioned earlier, the flight dynamics/guidance demonstration was implemented by integrating
the Flight Dynamics/Guidance CSCI written in Fortran with the Views CSCI written in C.
Modifications were made to the code of both CSCIs to pass data through interlanguage calls or
common data blocks. The TGUIDAP2/TMAN main routine has been modified such that it is
callable by Views, and it has been properly inserted in the infinite loop of the Views main function.
Each time the modified TGUIDAP2/TMAN main routine is invoked, TGUIDAP2 and TMAN are
driven sequentially as described above. The updated controls and flight dynamics axe then passed
through the C-Fortran interface to the Views graphics routines which update the scenario. Note that
the Views right-handed orthogonal coordinate system does not coincide with the
TGUIDAP2/TMAN earth system, as depicted in Fig. 3.2. Conversion of the aerodynamics data to
meet the Views direction convention must be performed before the Views graphics routines update
the scenario.

X (North) Y (North)

-'_ Y (East) -'_ X (East)
O O

TGUIDAP2/TMAN VIEWS

Fig. 3.2

4.0 DETAILED DESIGN DESCRIPTION

4.1 Organization

All the TGUIDAP2/TMAN Fortran files, ending with ".f', and Views C files, ending with ".c",
reside on IRIS/4D 70G. The Views files can be found in the directory
/usr/people/u/huimin/demo/mg3.0 and the TGUIDAP2/TMAN files in
/usr/people/u/huimin/demo/mg3.0/heli.

A top level flow chart of the integrated TGUIDAP2/TMAN-Views package is depicted in Fig. 4.1

A3I Phase HI Aero/Guidance CSCI Page F-6

imwind.c '_
_Views main functionJ

Io open_les.fopenfiles()
pens input and output data files I

I t0input1tdinput()
reads in data from tst_input

_fly.f
fly()_

guidap2x.
TDRIVEG

turn-straight-turn?

no

newpsix.f_

NEWPSI() _)

_ tmangx.fTMANG0

asses controls & flight dynamics_

to Views and updates scenario ,)

A3I Phase HI Aero/Guidance CSCI Page F-7

For more detailed flow charts and descriptions of Views and TGUIDAP2/TMAN refer to the
documents listed in Section 2.1.

4.2 Unit Detailed Design

TGUIDAP2/I'MAN has several units as shown in Fig. 4.1 and they are explained below. Only
those Views files which have been modified are included in this section. For those unmodified
Views tides refer to A3I Phase III Views. Inputs and Outputs seen below stand for the input and
output arguments to the functions.

4.2.1 openfiles.f

subroutine : openfiles0

Purpose: this subroutine opens input data files such as tst input and altitudes, and output data files
such as tsLoutput; each row of tst_input has four entries --- the first three entries contain values,
and the last entry contains the variable names used in TGUIDAP2 and TMANG routines; the first
two values are used by tdinput.f to determine an array element; a typical row of the data contained
in tst_input is

1 168 0.100 DT2;
refer to tsLinput for a complete list of array elements and the corresponding variables; the file
"altitudes" specifies the altitude above terrain for each waypoint.

Inputs: none.

Outputs: none.

4.2.2 tdbikdatx.f

subroutine : BLOCK DATA

Purpose: tdblkdatx.f establishes the equivalence between the array elements determined by
tdinput.f from the first two values specified in tst_input and the variables used in TGUIDAP2 and
TMANG routines; an example is

EQUIVALENCE (DT2,A(168));
it also sets values for the variables, such as

DATATHDOT / 12. /.

Inputs: none.

Outputs: none.

4.2.3 tdinput.f

function : tdinput()

Purpose: tdinput.f reads in the four entries from each row of tst_input -- three values and one
variable name; it processes the first value, which is used to identify the array name, and the second
value, which is the array index, to yield the array element; it then assigns the third value to the
array element; for example, the following row of data of tst_input

1 168 0.100 DT2

is processed by tdinput.f to yield

A3I Phase III Aero/Guidance CSCI Page F-8

A(168) = 0.1;
DT2 is the variable name used in TGUIDAP2 and TMANG routines which stands for the time step
of integration; DT2 is then set to 0.1 through the equivalence of DT2 and A(168) established in
tdblkdatx.f.

Inputs: none.

Outputs: none.

4.2.4 fly.f

subroutine : fly(ithcycle)

Purpose: the executive program of TGUIDAP2/TMAN; it has been modified to be able to be called
by the main function imwind.c of Views to drive TGUIDAP2/TMAN; it invokes TDRIVEG,
which computes the required control movements and, in turn, invokes TMANG to compute new
translational and rotational positions; when TDRIVEG is invoked, ithcycle is passed along as the
only argument, and its value is altered to -1 by TDRIVEG if all waypoints have been traversed.

Inputs: ithcycle.

Outputs: ithcycle.

4.2.5 tguidap2x.f

subroutine : TDRIVEG(ithcycle)

Purpose: invoked by fly.f to compute the collective, pedal, and cyclic controls needed to steer the
helicopter from the current position to the next waypoint; this routine does initialization for the first
run; it gets the next waypoint if the helicopter is within the capture zone of the current waypoint;
the computed controls are then passed to TMANG through a common data block; if all waypoints
have been traversed, ithcycle is altered to -I and returned to fly.f; otherwise, ithcycle remains
unaltered.

Inputs: ithcycle.

Outputs: ithcycle.

4.2.6 newpsix.f

subroutine : newpsi (xl, yl, hi, rl, x4, y4, h4, r2, x2, y2, h2, x3, y3, h3, trl,
tr2, tr3, tdl, td2, td3, d3, r3, kturn, xcl, ycl, xc2, yc2, sl, s2)

Purpose: invoked by tguidap2x.f only if the turn-straight-turn option is in use by setting NCASE
to one in tst_input; the turn-straight-turn option has always been in use during the Phase III
development and demonstration period because it renders high fidelity simulation; this routine
computes all possible routes to go from the current position to the next waypoint based on
horizontal position (x, y), heading, and airspeed associated with these two points, and chooses the
shortest one.

Inputs: initial position, heading, and turn radius (xl, yl, hl, rl), and final position, heading, and
turn radius (x4, y4, h4, r2); the headings hl and h4 are expressed in radians and are in the range (-
7t, 7t); r3 is zero in current application.

A3I Phase HI Aero/Guidance CSCI Page F-9

Outputs: same as above, only they are now updated.

4.2.7 tmangx.f

subroutine : TMANG 0

Purpose: invoked by TDRIVE to compute new position (x,y,z), roll, pitch, and yaw assuming that
the collective, pedal, and cyclic controls computed by TDRIVEG are applied for one DT2, which is
the integration time step defined in tsLinput and is one tenth of a second.

Inputs: none.

Outputs: none.

4.2.8 imwind.c

Purpose: the main function of MultiGen; it has been modified to invoke openfiles.f to open input
and output data files, tdinput.f to read input data, fiy.f to drive the flight dynamics/guidance CSCI,
and finally the graphics routines to draw the scenario.

Inputs: none.

Outputs: none.

4.2.9 animate.c

Purpose: the animation control file; some flight dynamics/guidance pulldown menus have been
added under the pulldown menu title "ANIMATE" such as Aero/Guidance Demo, Change
Waypoint, Freeze Flight, Resume Flight, Freeze Collective, Unfreeze Collective, and Restart Aero
Demo; clicking any of the these pulldown menus would invoke the proper function call to perform
the desired functionality.

Inputs: none.

Outputs: none.

4.2.10 simdata.c

Purpose: this file has been modified so that it is able to receive the updated flight dynamics and
control data -- x, y, z, roll, pitch, yaw, collective, pedal, and cyclic controls, etc., from the flight
dynamics/guidance CSCI through a common data block, perform necessary conversion on the data
to meet the MultiGen format, and update the MultiGen data structure for the helicopter.

Inputs: none.

Outputs: none.

4.2.11 path.c

Purpose: this file contains functions that provide the necessary interfaces for the user to change the
next waypoint on-line when the pulldown menu "Change Waypoint" under the pulldown menu title
"ANIMATE" is clicked, including the facilities to select a point from the terrain that specifies x, y,

A3I Phase III Aero/Guidance CSCI Page F-10

and z, and a window to input the altitude above terrain, airspeed, and heading for the new
waypoint; this file also contains routines to perform the necessary functionality when the pulldown
menu "Draw flight path" under the title "ANIMATE" is clicked -- open the data file "waypoints",
read waypoints, close the data file, and draw the flight path.

Inputs: none.

Outputs: none.

4.2.12 rngeorn.e

Purpose: this file sets the correct the internal resolution to convert the flight dynamics/guidance data
to conform with the MultiGen format.

Inputs: none.

Outputs: none.

4.2.13 mgiedit.e

Purpose: this file contains the routines to initiate the procedure for the user to change next waypoint
when the pulldown menu "Change Waypoint" is clicked.

Inputs: none.

Outputs: none.

4.2.14 checkerboard.2

Purpose: this binary file contains the data base of the scenario displayed in the world view
including a grid with a horizontal ridge in the middle and a helicopter, and is the second argument
of the command line to run the flight dynamics/guidance demo.

Inputs: none.

Outputs: none.

4.2.15 waypoints

Purpose: this file contains the information of all the waypoints which define the flight path; in this
file there are seven items associated with each waypoint : waypoint number, x, y, z, altitude above
terrain, speed, and heading; this is the data file that is opened when the pulldown menu "Draw
flight path" is clicked.

Inputs: none.

Outputs: none.

4.2.16 animateflt.doc

Purpose: this file contains the ID numbers and the names for all objects; it is the file needed to open
when the pulldown menu "Set up" under the title "ANIMATE" is clicked.

A3I Phase HI Aero/Guidance CSCI Page F-I1

Inputs: none.

Outputs: none.

4.2.17 animate.menu

Purpose: this file contains all the names of the pulldown menus under the title "ANIMATE",
including those related to the flight dynamics/guidance CSCI.

Inputs: none.

Outputs: none.

4.2.18 message.h

Purpose: this header file, used by MultiGen, contains a typedef struct to which four floating fields
have been added to include the four controls -- collective, pedal, x-cyclic, and y-cyclic; this file
constitutes part of the mechanism for passing data back and forth between TGUIDAP2/TMAN and
MultiGen.

Inputs: none.

Outputs: none.

4.2,19 message.common

Purpose: this header file is the counterpart of message.h used by TGUIDAP2/TMAN; it has a
common data block which contains the same set of information as that of message.h; this file
constitutes part of the mechanism for passing data back and forth between TGUIDAP2/TMAN and
MultiGen.

Inputs: none.

Outputs: none.

4.2.20 heli.h

Purpose: this header file, used by MultiGen, has a typedef struct, which contains the variables
used in "Change waypoint", "Freeze collective", "Change climb rate", etc.; this file constitutes part
of the mechanism for passing data back and forth between TGUIDAP2/TMAN and MultiGen.

Inputs: none.

Outputs: none.

4.2.21 heli.common

Purpose: this header file is the counterpart of heli.h used by the flight dynamics/guidance module;
it has a common data block which contains the same set of information as that of heli.h; this file
constitutes part of the mechanism for passing data back and forth between TGUIDAP2/TMAN and
MultiGen.

Inputs: none.

A3I Phase III Aero/Guidance CSCI Page F-12

Outputs: none.

5.0 NOTES

5.1 Miscellaneous

5.2 Limitations

Some of the new capabilities added on top of TGUIDAP2/TMAN work quite well, some of them
need to be improved. Among them "Aero/Guidance Demo", "Freeze Flight", "Resume Flight",
"Freeze Collective", and "Unfreeze Collective", and "Restart Aero Demo" work successfully, but
"Change Waypoint" needs to be improved. At this point, the "Change Waypoint" capability works
well only when the command is issued way before the helicopter reaches the next waypoint. This
will be improved to such an extent that the command of changing the next waypoint can be issued
any time before the helicopter gets in the capture zone.

5.3 Future Directions

A higher fidelity modeling within TGUIDAP2/TMAN is envisioned as necessary to meet evolving
A3I requirements. The goal is to make TGUIDAP2/TMAN more conu_ollable by the pilot model in
the manner that pilots usually fly. The wind effect may be incorporated into TGUIDA2/TMAN in
the future development. The current requirement to specify heading, altitude, etc. at each waypoint
may need to be relaxed because the complete set of such data is not known. Good dynamics model
for land and sea vehicles need to be developed to expand the application potential for the A3I
workstation.

6.0 USERS GUIDE

The following describes how to set up the flight dynamics/guidance demo.

(1) After logging on to 4D console or through the dummy terminal hooked to 4D, type "cd
/usr/people/u/huimin/demo/mg3.0/Mg/usr/mg" to change to the directory where the flight
dynamics/guidance demo executable and the necessary files reside.

(2) Do "mgflt.share checkerboard.2"; the pulldown menu bar, the edit control window, the icon
editors, the coordinate window, and a window with name "checkerboard.2" and with a small piece
of terrain appear on the console.

(3) Click the option "ANIMATE" on the menu bar, drag the mouse down to the menu "Set up",
and then release the mouse.

(4) Hit the carriage return when a temporary window with the default file name "animateflt.doc"
shows up on the screen; the temporary window then goes away.

(5) Another temporary window with all the object names and the assigned group ID's shows up on
the screen; click "DONE" in the temporary window; the temporary window then goes away.

A3I Phase lII Aero/Guidance CSCI Page F-13

(6) Click the menu option "SELECT" on the menu bar, drag the mouse down to the pulldown
menu "From ID", then release the mouse; a temporary window waiting for user to enter the object
name shows up on the screen.

(7) Type G4 to the temporary window and hit the carriage return; the temporary window goes
away.

(8) Hit the dot key to center the piece of terrain in the "checkerboard.2" window.

(9) Click the menu option "SELECT" on the menu bar, drag the mouse down to the pulldown
menu "Push Prio", and release the mouse.

(10) Click menu title "SELECT" on the menu bar, drag down to "Deselect all", and release mouse.

(11) Click the menu option "ANIMATE" on the menu bar, drag the mouse down to "Moving
Camera", then release the mouse; a blue window shows up.

(12) Click "DONE" in the blue window; the blue window then goes away and a window
representing the pilot view shows up at the lower left comer.

(13) Repeat step (11).

(14) Click the last item of the blue window and click "DONE"; the blue window goes away; a
window representing the observer's view shows up.

(15) Arrange the pilot view and the observer's view in any way you like.

(16) Click the menu option "ANIMATE" on the menu bar, drag the mouse down to "Draw Flight
Path", then release the mouse; a temporary window shows up prompting for the data file name;
type "waypoints" to the window and hit the return key; the flight path will be drawn in the
"checkerboard.2" window.

(17) Click the menu option "ANIMATE" on the menu bar, drag the mouse down to "Control
Display", then release the mouse; this step is to set up the three control windows -- cyclic, pedal,
and collective; but they will not get drawn until the flight dynamics/guidance demo starts.

(18) Now the set up is done; you can go ahead start the flight dynamics/guidance demo by clicking
the menu option "ANIMATE", dragging the mouse down to "Aero/Guidance Demo", and releasing
the mouse.

The pulldown menu "Freeze Flight" is provided for the user to freeze the demonstration for as long
as needed. To resume, click "Resume Flight". Clicking "Restart Aero Demo" will start the demo
from scratch. "Freeze Collective" allows the user to freeze the collective control for as long as he
wants, and the helicopter will fly with the frozen collective control until the user clicks "Unfreeze
Collective".

Annex G

Army-NASA Aircrew/Aircraft Integration Program

A3I

Software Detailed Design Document:
Communications

prepared by

Alex Chiu

December 1988

Table of Contents

1.0 INTRODUCTION .. G-1
1.1 Identification .. G-1
1.2 Scope ... G-1
1.3 Purpose ... G-1

2.0 RELATED DOCUMENTATION .. G-1

2.1 Applicable Documents ... G-1
2.2 Information Documents ... G- 1

3.0 REQUIREMENTS AND DESIGN APPROACH .. G- 1
3.1 Requirements and Rationale .. G-2
3.2 Hardware Environment ... G-2
3.3 Software Environment .. G-3

4.0 DETAILED DESIGN DESCRIgI'ION .. G-3

4.1 Organization .. G-3
4.2 Unit Detailed Design ... G-4

4.2.1 multi-stream.lisp .. G-4
4.2.2 multi_stream.c ... G-4

5.0 NOTES ... G-4
5.1 Miscellaneous .. G-4
5.2 Limitations .. G-5
5.3 Future Directions ... G-5

6.0 USERS GUIDE ... G-5

A3I Phase Ill Communications CSCI Page G-1

1.0 INTRODUCTION

1.1 Identification

This document establishes the requirements and detailed design of the Communication Computer
Software Configuration Item (CSCI), which forms a part of the A3I Computer Program System.
Descriptions of the detailed processing requirements, structure, I/O, and control are provided for
each lower level Computer Software Component (CSC), unit, or function contained within the
CSCI.

1.2 Scope

This document is focused on the Phase III development of the A3I communication CSCI --
particularly the development of a set of TCP/IP-based communication application routines for bi-
directional data transmission across the Ethemet between Symbolics 3675 and IRIS/4D, and
between IRIS/4D and IRIS/2500T. It is assumed that the reader is familiar with UNIX, C, Genera,

Symbolics Common Lisp, and the basic concept of local area network communication.

1.3 Purpose

The purpose of the A3I Communication CSCI is to provide a mechanism for the A3I CSCIs
running on different operating system workstations -- four Symbolics workstations and four IRIS
workstations to transmit data bi-directionally. The data may be in the form of characters, short or
long integers, and floating points. An IBM/AT compatible is also available which will serve as the
A3I communication control center to initiate the set up of all the necessary byte streams when the
A3I simulation starts, and also as the A3I diagnostic center with a LANalyzer board installed in it.
Previous development phases provided a means of one-way data transmission from Symbolics
3675 to IRIS 2500T which is inadequate for A3I's purposes. This CSCI has been enhanced to
allow bi-directional data transmission between Symbolics 3675 and IRIS/4D, and between
IRIS/4D and IRIS/2500T.

2.0 RELATED DOCUMENTATION

2.1 Applicable Documents

Tanenbaum, A. S. Silicon Graphics Inc., "Computer Networks", Prentice-Hall Inc.,
Englewood Cliffs, New Jersey, 1981

Symbolics Genera 7.2 Manual, Vol. 5, "Streams, Files, and I/O"

Symbolics Genera 7.2 Manual, Vol. 9, "Networks"

2.2 Information Documents

3.0 REQUIREMENTS AND DESIGN APPROACH

A3I Phase lIl Communications CSCI Page G-2

3.1 Requirements" and Rationale

Efficiency, modularity, reliability, flexibility, and friendly interface are always the guideline for the
development of the communication CSCI.

The current A3I configuration consists of four Genera-based Symbolics workstations (3675, two
3640s, 3620), four UNIX-based IRIS workstations (4D/'/0GTX, 3120, 2500T, Personal IRIS)
with Berkeley extension BSD 4.3, and a DOS-based IBM/AT. The task of providing facilities for
such a configuration to transmit data bi-directionally can be decomposed into five subtasks, based
upon the operating systems the workstations run. These five subtasks are to provide facilities for
data transmission (1) between Genera and Genera, (2) between UNIX and UNIX, (3) between
Genera and UNIX, (4) between DOS and UNIX, and (5) between DOS and Genera.

The emphasis of the Phase III communication CSCI development was on subtask (3) such that
characters, short and long integers, and floating points could be sent back and forth between
Symbolics 3675 and IRIS/4D/70GTX.

High transmission rate, high reliability, and ease in upgrading are the main reasons that Ethemet is
employed as the hardware cable to transmit data. Among the available protocols, TCP/IP is
employed because it provides accurate transmission control protocol, is well accepted by the
communication community, and is available on all Symbolics and IRIS workstations.

To achieve the transmission most effectively, short or long integers and floating points are
transmitted in binary format, while character strings in ASCII format.

3.2 Hardware Environment

Each workstation is a node in the network. Ethernet is the primary hardware used to transmit data
among the nodes. All nodes share the same channel and will hold their messages when there are
ongoing transmissions until the channel is clear. Listed below are some primary attributes of the
Ethernet.

Topology : Bus.
Medium : Shielded coaxial cable.

Data Rate : 10 million bits per second.
Maximum Separation of Nodes : 2.8 kilometers (about 1.7 miles).
Maximum Number of Nodes : 1024.
Network Control : Multi-access.
Access Control : CSMA/CS.
Allocation : 64 to 1518 bytes per packet.

Connecting the Symbolics (or IRIS) to an Ethernet local area network requires following hardware:
-- An Ethemet transceiver to attach to the Ethernet.
-- A drop cable to connect the Symbolics (or IRIS) cabinet to the Ethernet transceiver.
-- An Ethernet board in Symbolics (or IRIS) workstation.

The IRIS/4D 70GTX runs UNIX V with Berkeley extension and 4Sight windowing system while
the Symbolics 3675 runs Genera 7.2.

A3I Phase IlI Communications CSCI Page G-3

3.3 Software Environment

The IRIS communication software is written in C and the Symbolics communication software in
Lisp, in client-server fashion with the IRIS/4D 70GTX being the server and the Symbolics 3675
the client. These sets of software not only set up the network at the beginning of simulation but
also handle sending and receiving data. Caution must be exercised because the bytes get swapped
during the transmission of integers, short or long, and floating points between these two different
operating system workstations. To ensure that both the Symbolics 3675 and the IRIS/4D 70GTX
receive correct data, action must be taken to overcome the byte swap problem. This is done on the
Symbolics 3675 because functions are available there to perform the swapping of bytes. Before the
Symbolics 3675 sends data across the network and after it receives data from the network -- (1) for
short integers, swap the higher byte with the lower byte, and (2) for long integers and floating
points, swap the first high byte with the first low byte, and the second high byte with the second
low byte. The byte swap can also be overcome by sending integers and floating points in ASCII
format, but it may need more bytes to send the same integer or floating point than in binary format.

4.0 DETAILED DESIGN DESCRIPTION

4.1 Organization

The data passing between the 3675 Symbolics and the IRIS/4D 70GTX is depicted in the
following figure.

I Ethernet (10 Mbltsls)

TCL I .._ _ TCL]TRANSCEIVER DATA PACKET TRANSCEIVER

(Symbollcs_
3675] (IRISI4D 7OGTX_

Fig. 4.1

The following describes the most significant piece of communication software developed in
Phase III. It provides a link to integrate the Cognitive Pilot CSCI, which runs on the
Symbolics 3675, TGUIDAP2/TMAN (the Flight Dynamics/Guidance CSCI), and JACK
(the Mannequin CSCI), both run on IRIS/4D 70 GTX with JACK in foreground and
TGUIDAP2/TMAN in background.

An integration template has been implemented to validate this piece of communication
software. Appropriate communication C code has been properly inserted in JACK code to
enable him to accept the request for connection from the Symbolics 3675 when JACK is
run with the communication option, and to send/receive messages to/from the Symbolics
3675 across the network. A pseudo pilot model has also been used to replace the Cognitive
Pilot CSCI in sending/receiving messages to/from IRIS/4D 70GTX.

A3I Phase III Communications CSCI Page G-4

When this template starts running, it sets up the client-server network. The pseudo pilot
model then sends an activity script to JACK to execute. The pseudo pilot model receives
the completion signal sent from JACK after JACK is done with the script. Then
TGUIDAF2/YMAN sends the flight dynamics and control parameters to the pseudo pilot
model. After the pseudo pilot model receives the flight dynamics and control parameters it
sends a new script to JACK to start the next cycle. The network closes after the process
continues for a couple of hundred cycles.

4.2 Unit Detailed Design

Described in this section includes the detailed design for both the Symbolics 3675 and the IRIS/4D
70GTX communication software.

4.2.1 multi-stream.lisp

Purpose : this file is the pseudo pilot model running on the Symbolics 3675; it defines
protocols and eight byte streams -- four for the pseudo pilot model to communicate with
JACK, and another four for the pseudo pilot model to communicate with
TGUIDAP2/TMAN; it handles hand shaking and transmission of various types of data
over appropriate byte streams, sends activity scripts to JACK across the Ethernet; it
receives completion signal from JACK, and flight dynamics and control parameters from
TGUIDAP2/TMAN; it closes the network after a number of cycles. (to have a proper close
of the network the client should always close first.)

Inputs: none.

Outputs: none.

4.2.2 multi stream.c
D

Purpose : the file contains functions to set up four streams for the pseudo pilot model to
communicate with TGUIDAP2/TMAN and another four streams for the pseudo pilot model
to communicate with JACK by making a series of system calls; it also contains functions
for JACK to receive activity scripts from the pseudo pilot model across the Ethemet, for
JACK to send a message to the pseudo pilot model to signal the completion of the script,
and for TGUIDAP2/TMAN to send flight dynamics and control parameters to the pseudo
pilot model.

Inputs: none.

Outputs: none.

5.0 NOTES

5.1 Miscellaneous

In communication network regime, hand shaking is achieved when the client makes a request for
connection and the server accepts the request. To set up a network, it is common practice to bring
up the server (IRIS/4D 70GTX in our case) to the "listen" stage, waiting for the client to issue the

A3I Phase IlI Communications CSCI Page G-5

request for connection. The A3I network has been implemented in such a way that if the user
forgets to f'trst bring the server up it will remind the user to do so.

5.2 Limitations

When the communication is over it is advised that the the client (the Symbolics 3675 in our case)
should be the one who initiates the close of the network. Otherwise, an improper close of the
network will result, i.e., the port numbers allocated will not be properly released, and any future
request for connection using the same set of port numbers will not succeed unless the system is
rebooted.

5.3 Future Directions

(1) Incorporate the IBM/AT compatible in the A3I simulation as the A3I communication
debugging center by installing in it the LANanlyzer. It serves as the A3I communication
control center which initiates the set up and close of the network.
(2) Expand the A3I network to include new workstations.

6.0 USERS GUIDE

The following describes the general procedure to set up the communication network for the
Symbolics 3675 and the IRIS/4D 70GTX to run the integration template which includes the pseudo
pilot model, JACK, and TGUIDAP2/TMAN.

(1) After logging on to the IRIS/4D 70GTX (the server) through the dummy terminal
hooked to it, type "cd/usr/people/u/huimin/b4tape/comm_back/s4d" to change to the
directory where the communication executable resides.
(2) Do "multi-stream" to bring the server to the "listen" stage; a message then pops up
signaling that the server is ready to accept a request for connection.
(3) Log on to the Symbolics 3675 (the client), and run the executable "establish-network"
by typing (user::establish-network) and hitting the carriage return.
(4) Click the "yes" icon when the window with the question "Is Coral ready?" shows up.
(5) Click the "yes" icon when another temporary window shows up on the Symbolics 3675
asking if Coral is ready to accept the request for opening a byte stream to transmit
characters.
(6) Click the "yes" icon when another temporary window shows up on the Symbolics 3675
asking if Coral is ready to accept the request for opening a byte stream to transmit short
integers.
(7) Click the "yes" icon when another temporary window shows up on the Symbolics 3675
asking if Coral is ready to accept the request for opening a byte stream to transmit long
integers.
(8) Click the "yes" icon when another temporary window shows up on the Symbolics 3675
asking if Coral is ready to accept the request for opening a byte stream to transmit floating
points.

At this point, the simulation proceeds, as described in Section 4.1, and terminates
automatically after a couple of hundred cycles.

A3I Phase IlI Communications CSCI Page G-6

Although items (5) through (8) seem to be redundant, they are implemented to provide
friendly user interface.

Ikl/ A
N*|onal A_aneullc_ Imd

Ad_l_Mr_

'i. Report No.

NASA CR- 177557

Report Documentation Page

2. Govemment Accession No. 3. Recipianrs Catalog No.

4. Title and Subtitle

Army-NASA Aircrew/Aircraft Integration Program (A3I) Software

Detailed Design Document: Phase III

7. Author(s)

Carolyn Banda, Alex Chiu, Gretchen Helms, TehMing Hsieh,

Andrew Lui, Jerry Murray, and Renuka Shankar

g. Performing Organization Name and Address

Sterling Federal Systems, Inc.
1121 San Antonio Road

Pale Alto, CA 94303-4380

5. Report Date

June 1990

6. Performing Organization Code

8. Performing Organization Report No.

A-90197

10. Work Unit No.

505-61

11. Contract or Grant No.

NAS2-11555

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

15, Sup_ernentary Notes

Point of Contact: Robert A. Carlson, Ames Research Center, MS 233-15

Moffett Field, CA 94035-1000

(415) 604-6036 or FTS 464-6036

16. Abstract

This report details the capabilities and design approach of the MIDAS (Man-machine Integration

Design and Analysis System) computer-aided engineering (CAE) workstation under development by the

Army-NASA Aircrew/Aircraft Integration (A3I) Program. This workstation uses graphic, symbolic, and

numeric prototyping tools and human performance models as part of an integrated design/analysis

environment for crewstation human engineering. Developed incrementally, the requirements and design

for Phase Ill (Dec. 87-Jun 89) are described. Software tools/models developed or significantly modified

during this phase included: 1) an interactive 3-D graphic cockpit design editor;, 2) multiple-perspective

graphic "views" to observe simulation scenarios; 3) symbolic methods to model the mission decomposi-

tion, equipment functions, pilot tasking and loading, as well as control the simulation; 4) a 3-D dynamic

anthropometric model; 5) an inter-machine communications package; and 6) a training assessment

component. These components were successfully used during Phase IIl to demonstrate the complex

interactions and human engineering findings involved with a proposed cockpit communications design

change in a simulated AH-64A Apache helicopter/mission that maps to empirical data from a similar study

and AH-1 Cobra flight test.

17. Key Words (Suggested by Author(s))

Computer-aided engineering, Human

performance modelling, Crewstation design,

Man-machine interface, Human factors

engineering

18. Distribution Statement

Unclassified-Unlimited

Subject Category - 54

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21, No. of Pages

Unclassified Unclassified 318

NASA FORM 1626 OCT86

For sale by the National Technical Information Service, Springfield, Virginia 22161

22. Pdce

AI4

